Investigating Applicability Heuristics of Answer Set Programming
in Game Development: Use Cases and Empirical Study

Evangelos Lamprou
e Jamprou@upnet.gr
University of Patras

Patras, Greece

ABSTRACT

The game industry is continuously growing and evolving, with new
ways of creating games being developed. However, even with the
availability of powerful game engines, developers are still forced to
spend time and effort implementing common game features, such
as basic Al, path-finding, and simple scene variations. This can
become a serious detriment for indie game developers. The present
research focuses on the application of Answer Set Programming
(ASP) methods within the game development process, aiming to
support rapid and cost-effective game prototyping for indie game
developers. Specifically, we present a pragmatic approach to the
usage of ASP for game development within certain use cases and
we report on evaluation results based on feedback that was received
from end-users. Analysis of results demonstrates how ASP can be
used, providing new ways of thinking about game mechanics and
content creation, and eventually paving the way for new game
design frameworks and possibilities. On the downside, adoption of
the suggested method can be difficult due to unfamiliarity with the
ASP programming paradigm.

CCS CONCEPTS

« Human-centered computing — Empirical studies in HCI; «
Computing methodologies — Logic programming and an-
swer set programming; « Software and its engineering —
Software prototyping; Interactive games.

KEYWORDS
Game Development Answer Set Programming Evaluation Study

ACM Reference Format:

Evangelos Lamprou and Christos Fidas. 2023. Investigating Applicability
Heuristics of Answer Set Programming in Game Development: Use Cases
and Empirical Study . In 2nd International Conference of the ACM Greek
SIGCHI Chapter (CHIGREECE 2023), September 27-28, 2023, Athens, Greece.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3609987.3609993

1 INTRODUCTION

The game industry continuously evolves, and new ways of creating
games are emerging. Game engines offer powerful tools and features
to aid game designers in realizing their ideas [1]. However, most
game development engines rely on imperative languages, which

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
CHIGREECE 2023, September 27-28, 2023, Athens, Greece

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0888-6/23/09...$15.00
https://doi.org/10.1145/3609987.3609993

Christos Fidas
fidas@upatras.gr
University of Patras
Patras, Greece

specify step-by-step instructions using variables, loops, and condi-
tional statements. In contrast, Answer Set Programming (ASP) [12]
is a declarative programming paradigm that has shown promise in
solving complex problems across various fields, including games
[5, 6, 16, 23]. ASP has been applied in puzzles, game playing, pro-
cedural content generation, and game content generation tools
[3, 4, 8, 10, 13, 25, 28, 29].

The exploration of different programming languages and paradigms
in game development has been a subject of study [2, 20, 24, 26].
However, there is still a gap in understanding how to effectively
apply these innovative tools as an end user [11].

Motivation and Contribution. In small game development
teams (1-5 people), the roles of developer and designer often over-
lap. This means game designers frequently interrupt the creative
process to implement complex game logic. However, there is a lack
of suitable tools for rapid prototyping. To address this issue, we
propose an ASP framework for game development. We highlight
aspects of game development suitable for ASP implementation,
present case studies, and evaluate ASP with developers of varying
familiarity with the paradigm.

The paper is structured as follows. First we present background
knowledge for understanding the ASP programming paradigm.
Next, we present the suggested framework that can be utilized by
indie game developers and finally, we present the results of the
evaluation study.

2 BACKGROUND THEORY ON ANSWER SET
PROGRAMMING

. Inspire
Design Artifacts
Model Integration
ASP Program Solve Answer Sets

Figure 1: Game development workflow with the help of ASP
tooling. The designer starts with an initial goal, the design
of a game mechanic/behavior/set of artifacts which leads
to a specification in the form of an ASP program. The pro-
gram’s solutions can help to further refine the initial design
as missing or unwanted aspects of it become apparent after
its integration with the rest of the game [24].

https://doi.org/10.1145/3609987.3609993
https://doi.org/10.1145/3609987.3609993
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3609987.3609993&domain=pdf&date_stamp=2023-09-27

CHIGREECE 2023, September 27-28, 2023, Athens, Greece

Answer Set Programming (ASP) [12, 18] is a problem-solving
paradigm with roots in logic programming and non-monotonic
reasoning. As shown in fig. 1, the programming model of ASP is
one where the programmer models the problem domain, with the
solution being handled by a solver program. Programming using
this paradigm is done in a family of languages sometimes called
AnsProlog [17]. In our work, we will be using the input language of
Clingo [15], which is a high-performance integrated solver with a
large collection of libraries and bindings helpful in integrating it
with external tools.

The syntax, similar to that of Prolog, represents code and data
through logical terms. Collections of logical terms, as seen in list-
ing 1, can represent the game world’s state. Rules, expressed using
the : - operator, enable complex reasoning by defining relationships
between atoms. Choice rules, exemplified in listing 3, allow the ASP
solver to make selections among atoms. Integrity constraints, as
shown in listing 4, can restrict invalid answer sets. Optimization
directives, such as #minimize and #maximize in listing 5, guide the
solver to output optimal answer sets.
position(player, vec3(1, 0, 1)).
tile(1, 1, water).
object(orc).

object(frog).

Listing 1: A set of facts describing game elements/game state.

damaged(player) :- fall(player).

hostile(X) :- enemy(X).

friend(X) :- object(X), not hostile(X).
health(N-1, T+1) :- health(N, T), attacked(T).

Listing 2: Logic rules describing relationships between
entities and connection between action and effect.

{chosen(X,Y) : person(X)} :- house(Y).

Listing 3: A choice rule.

:- chosen(X, Y), chosen(Z, Y), X == Y.
Listing 4: An integrity constraint.

#minimize{C : cost(E,C)}.

Listing 5: An optimization directive.

To compute answer sets, ASP programs are inputted into ASP
solvers. These solvers provide efficient mechanisms to generate the
set of valid answers to the given problem. An ASP solver can be
thought of as a black box, with them being interchangeable as long
as the input language semantics remain the same.

3 HEURISTICS AND METHOD FOR APPLYING
ASP IN THE GAME DEVELOPMENT
PROCESS

An important aspect of the suggested framework is the determi-
nation of specific game design heuristics pointing towards game
components suitable for ASP programming approaches. The set of
heuristics was constructed by identifying common features from
games developed using ASP in the literature while also considering
the paradigm’s technical limitations in the context of games. We
suggest the following applicability principles/heuristics:

Lamprou and Fidas

o ASP Applicability Heuristic (A). Brevity: ASP (and declar-
ative programming in general) can reduce software complex-
ity [27], allowing for concise code [7]. This however requires
that when modelling a game mechanic, only its important
aspects are encoded. For example, in a maze game, only es-
sential elements like maze layout, starting point, treasure
location, and movement rules would be included.

e ASP Applicability Heuristic (B). Relatively Small Solu-

tion Space: To minimize solving times, designers should
avoid scenarios with large solution spaces. One way to achieve
this is by limiting the options available to the generator/a-
gent through choice rules in the ASP program. For instance,
restricting an agent’s movement to four directions (up, down,
left, right) instead of full motion. To introduce natural-looking
movement later, a physics simulation can be utilized within
the game engine.
Designers can further address this limitation by breaking
down the problem into smaller sub-problems. For example,
in [9], the generation of a dungeon’s topology was decoupled
from the content of each room, reducing generation times.
In [22], an agent’s different states (eat, hiding, action) were
split into smaller ASP program modules, leveraging meta-
reasoning to determine the relevant parts of the knowledge
base for solving.

o ASP Applicability Heuristic (C). Emergent Complexity:
Create scenarios where interesting behavior emerges when
agents are observed interacting with each other and the
environment inside the game world or when the generated
artifacts exhibit interesting patterns that were not explicitly
modeled in the ASP program. In [21], where a declarative
planning layer was added to agents in the game FEAR,
complex behaviors emerged from a combination of simple
goals and actions together with the dynamic state of the
game world. The Portal game levels generated using ASP
in [4] were complex and challenging, while modeling only
involved specifying how a level is solvable and ensuring its
topological integrity.

Furthermore, we propose a standardized development methodol-
ogy (fig. 2) to guide aspiring developers to successfully apply ASP to
their applications by providing some general programming guide-
lines relating to ASP modelling, based on the “guess and check”
paradigm [14].

(1) Step (a): Determine Input and Output Atoms: The set
of input atoms provides the context required for the ASP
program to give correct results. These are usually dynamic
aspects of the game’s runtime and change at each invoca-
tion of the ASP solver. On the other hand, output atoms
encode the results produced by the solver and which will
be interpreted by the game runtime as artifacts or agent
behavior.

(2) Step (b): Generate “Random” Answer Sets: During the de-
velopment phase, the programmer can efficiently construct
an ASP program comprising of choice rules to generate par-
tially random outcomes, considering the output atoms. This
stage also involves the integration of the solver with the
game runtime to enhance the debugging process.

Investigating Applicability Heuristics of Answer Set Programming in Game Development

Game World

A P*‘oms Rllles/ C

On, .
ot Lating
ASP Solver ASP Program

Answer Sets

Game Integration

Figure 2: High level overview of ASP integration into a game
engine. The Game World consists of the current game state
and the information of all the game objects inside of it. In-
put logic atoms are the facts used to describe the current
state of the game world. These, together with the rules and
constraints of the ASP program, are fed into the ASP solver,
which then outputs answer sets. These describe logic such
as the actions that an agent should take or where an object
should be placed. Through the Game Integration component,
these answer sets are used to update the game world.

(3) Step (c): Add Integrity Constraints/Optimization Direc-
tives: Based on the current problem’s domain, it is necessary
to add integrity constraints and/or optimization directives.
Constraints provide direct control over the produced answer
sets for them to comply both with the game’s ruleset as well
as the designer’s ideas. Among them, if needed, the solver
can output the most optimal ones based on some variable
using optimization directives.

3.1 Proof of Concept and Use Cases

Proof of concept applications were developed to demonstrate the
practical implementation of ASP in games. These applications serve
as concrete examples, showcasing how ASP can be utilized to im-
plement game mechanics and content generators and have been
made publicly available [19].

4 EMPIRICAL STUDY

4.1 Research Questions

The main research questions of the empirical study were to in-
vestigate: RQ1) Can the aforementioned applicability heuristics
be validated by beginner game developers within the context of
their own game designs? RQ2) What does the proposed method-
ology offer specifically to beginner game developers? RQ3) Did
beginner game developers encounter challenges when applying the
suggested workflow, and if so, what were the specific difficulties
faced?

4.2 Participants

We recruited a total of 8 participants (2 female and 6 male), all of
whom were undergraduate Electrical and Computer Engineering
students. All of them had experience programming with imperative
languages, with 3 having experience with logical languages (either

CHIGREECE 2023, September 27-28, 2023, Athens, Greece

Prolog or Clingo). All but two of the participants had prior experi-
ence with game development, in the context of personal projects.
Participants were informed that no personal data was collected
aside from their answers to the interview part of the study. On
average, each of the participants took part in the study procedure
for a duration of 0.5 to 3 hours, resulting in a total study length of
approximately twenty-four hours.

4.3 Study Procedure

The study conducted was a one-on-one user study, where each
participant worked individually with the researcher. The study
utilized all collected data in an anonymous manner, and participants
had the freedom to withdraw from the study at any time of their
choosing.

e Phase A - Introduction to ASP. The study began with a
brief overview of Answer Set Programming (ASP) technol-
ogy and the Clingo language’s syntax and semantics.

e Phase B - Implementation of Game Mechanic/Gener-

ation of Content. Study members took the role of a non-

expert game developer who is tasked both with designing
and implementing part of a game, a scenario present in indie
game development contexts. Participants were encouraged
to think of a game mechanic or content generator to imple-
ment using ASP, fostering creativity and challenging ideas.

The researcher assisted participants in creating the logic pro-

gram for their game mechanic with ASP, providing guidance

and answering questions. Despite the mature programming

background of the participants, we avoided the use of a

traditional imperative approach as part of the experiment,

which, even though would have provided a concrete baseline
for comparison, could potentially limit participants’ design
choices based on familiarity with imperative methods.

Phase C - Discussion. Finally, we conducted a semi-structured

interview to receive qualitative feedback and elicit the par-

ticipant’s likeability and comments concerning the proposed
workflow.

Limitations. Certainly, a limitation of our study is that the
participants’ profile was limited to students rather than experienced
game developers. Additionally, the number of participants was
relatively small, resulting in our reliance on qualitative analysis for
the research findings.

5 ANALYSIS OF RESULTS

5.1 RQ1: Applicability of suggested ASP
Heuristics in Game Development Scenarios

During the study, a range of applications were created [19]. Partici-
pants demonstrated competence in applying the ASP applicability
heuristics throughout the study. Their creations showcased an un-
derstanding of at least one of brevity, consideration of relatively
small solution spaces, and the ability to capture emergent complex-
ity. These observations affirm the practicality and effectiveness of
the ASP applicability heuristics in guiding participants towards
successful implementation and utilization of ASP in the game de-
velopment process.

CHIGREECE 2023, September 27-28, 2023, Athens, Greece

5.2 RQ2: Value of the Methodology

A participant with extensive game development experience stated
that the workflow provides the opportunity to conceive entirely
novel game mechanics that would otherwise be overlooked due
to the challenges associated with traditional programming. This
participant emphasized that Answer Set Programming (ASP) allows
for the creation of game mechanics that might otherwise be deemed
too complex to develop.

The majority of participants valued ASP primarily for its con-
cise problem-solving capability, streamlining development. It was
noted that ASP can benefit non-programmers by enabling logical
constraint expression without extensive programming experience.
After introduction to the ASP paradigm, most participants eas-
ily recognized applicable scenarios. Among the proposed design
heuristics, the “relatively small solution space” was the most chal-
lenging to apply and perceived as limiting by participants. Despite
a mention of a steep learning curve by some, the ASP approach
was generally regarded as a powerful and creative method for game
design.

— Participant 1: “It gives you the ability to create entirely new
game mechanics that you wouldn’t bother developing other-
wise because of the programming difficulty.”

— Participant 5: “[A game developer] might say something like
"Oh, this can be easily encoded using rules". Now, it’s easier
to think of a game mechanic and come up with constraints
to create it.”

5.3 RQ3: Difficulties in the suggested ASP
workflow application

We asked participants what they found challenging about applying
the proposed workflow. Participants encountered challenges with
the unfamiliar syntax in Clingo, finding it unconventional and diffi-
cult to write and read programs. The lack of a debugger hindered
error identification, especially during complex iterations with mul-
tiple rules and constraints. Additionally, slow solving times and
limited scalability were recognized as limitations.

— Participant 1: “I believe it would take me a long time to learn
the language. The syntax is strange, but I can create a mental
model of how it works.”

— Participant 7: “It would be nice to have a graphical interface
that shows how the solver arrives at solutions.”

— Participant 8: “[The workflow] could be improved if Clingo
had better syntax. Maybe an abstraction layer built on top
of it.”

6 CONCLUSIONS AND FUTURE WORK

The aim of our research was to explore the applicability heuristics
of Answer Set Programming (ASP) in the context of game devel-
opment. We focused on identifying potential use cases where ASP
could be effectively utilized and conducted an empirical study to
evaluate its practical effectiveness. To achieve our research objec-
tives, we first identified potential use cases where ASP could be
applied. Furthermore, we conducted an empirical study to assess
the practical feasibility and effectiveness of using ASP in game

Lamprou and Fidas

development. This study involved designing experiments or scenar-
ios where ASP-based solutions were implemented and evaluated.
The proposed workflow stems from the need for robust high level
programming interfaces to assist with the development of complex
applications like games. We have proposed a methodology for rec-
ognizing parts where game logic can be elegantly expressed using
answer-set programming. Through this, aspiring game develop-
ers, even without extensive experiencing with game creation, can
incorporate this new set of tools to their workflow, enabling for
a different approach and mental process for designing and imple-
menting parts of their projects.

A research project that could overcome ASP’s narrow adaptation
is the creation of language that preservers the AnsProlog language’s
semantics while providing a more developer-friendly syntax and
structure. Future work should involve the application of ASP in
larger-scale game projects, exploring how the proposed workflow
can fit into long-running game projects.

ACKNOWLEDGMENTS

We would like to thank all the anonymous reviewers for their
valuable input on this work. This research has been co-financed
by the European Regional Development Fund of the European
Union and Greek national funds through the Operational Program
Competitiveness, Entrepreneurship and Innovation, under the call
RESEARCH - CREATE - INNOVATE (project code: TIEDK-T2EDK-
01392).

REFERENCES

[1] A. Andrade. 2015. Game engines: a survey. EAI Endorsed Transactions on Game-
Based Learning Endorsed Transactions on Game-Based Learning 2, 6 (nov 2015),
150615. https://doi.org/10.4108/eai.5-11-2015.150615

Denise Angilica, Giovambattista Ianni, Francesca A. Lisi, and Luca Pulina. 2022.

Al and Videogames: a "Drosophila” for Declarative Methods. In Proceedings of

the 10th Italian workshop on Planning and Scheduling (IPS 2022), RCRA Incontri E

Confronti (RiCeRcA 2022), and the workshop on Strategies, Prediction, Interaction,

and Reasoning in Italy (SPIRIT 2022) co-located with 21st International Conference

of the Italian Association for Artificial Intelligence (AIXIA 2022), November 28 -

December 2, 2022, University of Udine, Udine, Italy (CEUR Workshop Proceedings,

Vol. 3345), Riccardo De Benedictis, Nicola Gatti, Marco Maratea, Andrea Micheli,

Aniello Murano, Enrico Scala, Luciano Serafini, Ivan Serina, Alessandro Umbrico,

and Mauro Vallati (Eds.). CEUR-WS.org. https://ceur-ws.org/Vol-3345/paper8_

RiCeRCal.pdf

Denise Angilica, Giovambattista Janni, and Francesco Pacenza. 2022. Declarative

Al design in Unity using Answer Set Programming. In 2022 IEEE Conference on

Games (CoG). IEEE. https://doi.org/10.1109/cog51982.2022.9893603

Evgenia Antonova. 2015. Applying Answer Set Programming in Game Level Design.

Master’s thesis. Aalto University.

[5] Theofanis Aravanis, Konstantinos Demiris, and Pavlos Peppas. 2018. Legal
Reasoning in Answer Set Programming. In 2018 IEEE 30th International Conference
on Tools with Artificial Intelligence (ICTAI). IEEE. https://doi.org/10.1109/ictai.
2018.00055

[6] Georg Boenn, Martin Brain, Marina De Vos, and John ffitch. 2010. Automatic

Music Composition using Answer Set Programming. arXiv:1006.4948 [cs.LO]

Ivan Bratko. 2012. Prolog programming for Artificial Intelligence. Pearson educa-

tion.

Francesco Calimeri, Michael Fink, Stefano Germano, Andreas Humenberger,

Giovambattista Ianni, Christoph Redl, Daria Stepanova, Andrea Tucci, and Anton

Wimmer. 2016. Angry-HEX: An Artificial Player for Angry Birds Based on

Declarative Knowledge Bases. IEEE Trans. Comput. Intell. AI Games Transactions

on Computational Intelligence and Al in Games 8, 2 (jun 2016), 128-139. https:

//doi.org/10.1109/tciaig.2015.2509600

Francesco Calimeri, Stefano Germano, Giovambattista Ianni, Francesco Pacenza,

Armando Pezzimenti, and Andrea Tucci. 2018. Answer Set Programming for

Declarative Content Specification: A Scalable Partitioning-Based Approach.

(2018), 225-237. https://doi.org/10.1007/978-3-030-03840-3_17

Kate Compton, Adam Smith, and Michael Mateas. 2012. Anza Island: Novel Game-

play Using ASP. In Proceedings of the The Third Workshop on Procedural Content

[2

B3

4

7

8

—
)

[10

https://doi.org/10.4108/eai.5-11-2015.150615
https://ceur-ws.org/Vol-3345/paper8_RiCeRCa1.pdf
https://ceur-ws.org/Vol-3345/paper8_RiCeRCa1.pdf
https://doi.org/10.1109/cog51982.2022.9893603
https://doi.org/10.1109/ictai.2018.00055
https://doi.org/10.1109/ictai.2018.00055
https://arxiv.org/abs/1006.4948
https://doi.org/10.1109/tciaig.2015.2509600
https://doi.org/10.1109/tciaig.2015.2509600
https://doi.org/10.1007/978-3-030-03840-3_17

Investigating Applicability Heuristics of Answer Set Programming in Game Development CHIGREECE 2023, September 27-28, 2023, Athens, Greece

[20] Chris Martens. 2021. Ceptre: A Language for Modeling Generative Interactive

Machinery, New York, NY, USA, 1-4. https://doi.org/10.1145/2538528.2538539 Systems. In Artificial Intelligence and Interactive Digital Entertainment Conference.
[11] Michael Debellis and Christine Haapala. 1995. User-centric Software Engineering. [21] Jeff Orkin. 2006. Three States and a Plan: The Al of F.E.A.R. GDC 2006.

IEEE Expert 10 (03 1995), 34 — 41. https://doi.org/10.1109/64.391959 [22] Tony Ribeiro, Katsumi Inoue, and Gauvain Bourgne. 2013. Combining Answer
[12] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. 2009. Answer Set Programs for Adaptive and Reactive Reasoning. (dec 2013).

Set Programming: A Primer. In Lecture Notes in Computer Science. Springer Berlin [23] Francesco Ricca, Giovanni Grasso, Mario Alviano, Marco Manna, Vincenzino

Generation in Games (Raleigh, NC, USA) (PCG’12). Association for Computing

Heidelberg, 40-110. https://doi.org/10.1007/978-3-642-03754-2_2

D. Fusca, Stefano Germano, J. Zangari, Francesco Calimeri, and Simona Perri.
2013. Answer set programming and declarative problem solving in game Als.

CEUR Workshop Proceedings 1107 (01 2013), 81-88.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten
Schaub, and Sven Thiele. 2015. A User’s Guide to gringo, clasp, clingo, and
iclingo.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.
2014. Clingo = ASP + Control: Preliminary Report. CoRR abs/1405.3694 (2014).

arXiv:1405.3694 http://arxiv.org/abs/1405.3694

Martin Gebser, Roland Kaminski, and Torsten Schaub. 2011. aspcud: A Linux
Package Configuration Tool Based on Answer Set Programming. Electronic
Proceedings in Theoretical Computer Science 65 (aug 2011), 12-25. https://doi.org/
10.4204/eptcs.65.2

Michael Gelfond. 2002. Representing Knowledge in A-Prolog. In Computational
Logic: Logic Programming and Beyond. Springer Berlin Heidelberg, 413-451. https:
//doi.org/10.1007/3-540-45632-5_16

Michael Gelfond and Vladimir Lifschitz. 2000. The Stable Model Semantics For
Logic Programming. Logic Programming 2 (12 2000).

Evangelos Lamprou and Christos Fidas. 2023. asp-games. https://github.com/
vagos/asp-games

Lio, Salvatore liritano, and Nicola Leone. 2011. Team-building with Answer Set
Programming in the Gioia-Tauro Seaport. arXiv:1101.4554 [cs.LO]

Adam M. Smith. 2012. Mechanizing Exploratory Game Design. Ph.D. Dissertation.
University of California, Santa Cruz.

Adam M. Smith and Michael Mateas. 2011. Answer Set Programming for Proce-
dural Content Generation: A Design Space Approach. IEEE Trans. Comput. Intell.
AI Games Transactions on Computational Intelligence and Al in Games 3, 3 (sep
2011), 187-200. https://doi.org/10.1109/tciaig.2011.2158545

Adam M. Smith, Mark J. Nelson, and Michael Mateas. 2010. LUDOCORE: A
logical game engine for modeling videogames. In Proceedings of the 2010 IEEE
Conference on Computational Intelligence and Games. IEEE. https://doi.org/10.
1109/itw.2010.5593368

Diomidis Spinellis. 2013. The Importance of Being Declarative. IEEE Software 30,
1 (January/February 2013), 90-91. https://doi.org/10.1109/MS.2013.18

Michael Thielscher. 2009. Answer Set Programming for Single-Player Games
in General Game Playing. In Logic Programming. Springer Berlin Heidelberg,
327-341. https://doi.org/10.1007/978-3-642-02846-5_28

Fernando Zacarias, Rosalba Cuapa, Luna Jimenez, and Noemi Vazquez. 2019.
Modelling of Intelligent Agents Using A-Prolog. International Journal of Artificial
Intelligence and Applications 10, 2 (mar 2019), 1-11. https://doi.org/10.4018/ijaia.
2019030102

https://doi.org/10.1145/2538528.2538539
https://doi.org/10.1109/64.391959
https://doi.org/10.1007/978-3-642-03754-2_2
https://arxiv.org/abs/1405.3694
http://arxiv.org/abs/1405.3694
https://doi.org/10.4204/eptcs.65.2
https://doi.org/10.4204/eptcs.65.2
https://doi.org/10.1007/3-540-45632-5_16
https://doi.org/10.1007/3-540-45632-5_16
https://github.com/vagos/asp-games
https://github.com/vagos/asp-games
https://arxiv.org/abs/1101.4554
https://doi.org/10.1109/tciaig.2011.2158545
https://doi.org/10.1109/itw.2010.5593368
https://doi.org/10.1109/itw.2010.5593368
https://doi.org/10.1109/MS.2013.18
https://doi.org/10.1007/978-3-642-02846-5_28
https://doi.org/10.4018/ijaia.2019030102
https://doi.org/10.4018/ijaia.2019030102

	Abstract
	1 Introduction
	2 Background Theory on Answer Set Programming
	3 Heuristics and Method for Applying ASP in the Game Development Process
	3.1 Proof of Concept and Use Cases

	4 Empirical Study
	4.1 Research Questions
	4.2 Participants
	4.3 Study Procedure

	5 Analysis of Results
	5.1 RQ1: Applicability of suggested ASP Heuristics in Game Development Scenarios
	5.2 RQ2: Value of the Methodology
	5.3 RQ3: Difficulties in the suggested ASP workflow application

	6 Conclusions and Future Work
	Acknowledgments
	References

