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Abstract
Large language models (LLMs) are achieving state-of-the-
art results across a wide variety of software transforma-
tion tasks—including translating across languages and lift-
ing opaque software components to high-level languages.
Unfortunately, their results are often subtly incorrect, in-
secure, or underperformant—affecting the widespread de-
ployment of these LLM-driven techniques in settings that
go beyond the narrow scope of academic papers. This paper
posits that such widespread deployment crucially depends
on developing appropriate model guardrails for safeguarding
the results of the transformation process. Such guardrails
can be supported by component exoskeletons, tunable par-
tial specifications extracted mostly automatically from the
original, pre-transformed component. Exoskeletons serve
as component projections that supplement, and often go
through, the entire transformation process, confirming that
the new, transformed component meets the original specifi-
cations. They show promise on several real-world scenarios
and unearth exciting research directions.

CCS Concepts: • Software and its engineering→ Soft-
ware development techniques.
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Fig. 1. Exoskeletons as component projections. In a typical
LLM-assisted workflow (left), an LLM transforms a component us-
ing its source code and a handcrafted prompt. With exoskeletons
(right), the component is projected—guided via a query—onto light-
weight, verifiable properties (e.g., input-output examples, system-
call traces), which guard and support an LLM in producing the
transformed component. A verification and feedback loop confirms
the result satisfies the query, safeguarding transformations.

1 Introduction
Large language models (LLMs) are used pervasively to assist
with software development and evolution tasks [8, 11, 13, 34].
A recent longitudinal study from GitHub indicates that LLMs
are used by over 90% of U.S.-based developers [25] among
other tasks to translate code between languages [8], refactor
complex modules [34], and generate components given a
few input-output examples [13].
Unfortunately, the broader adoption of LLMs remains

challenging in tasks that target the transformation of soft-
ware components, including component lifting, lowering,
acceleration, optimization, and other improvement tasks.
LLM outputs remain heavily influenced by surface-level pat-
terns in their inputs [31], struggle to satisfy structural or
negative constraints [14, 17], and often overfit to spurious
cues [29, 30]. As a result, they often need steering through
ad hoc heuristics, trial-and-error, and carefully curated ex-
amples [6, 16, 19, 21, 33].
The key thesis underlying this paper is that, as transfor-

mation tasks take existing software components inherently
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into account in order to improve them, LLM outputs can
in practice be guarded by verifiable hypotheses extracted
directly from the original components. These hypotheses
form partial specifications in the form of input-output exam-
ples, system-call traces, generated tests, function and data-
structure signatures, execution invariants, and other analysis
facts that underpin any improvement, translation, transfor-
mation, or augmentation of an existing software component
towards a new component. We call these partial specifica-
tions exoskeletons, as they are initially extracted from the
original component before any improvement or transforma-
tion has been applied, they potentially undergo similar trans-
formations, and then they are applied externally to the new,
improved component—but remain tunable by component-
external entities such as their users (§2).
Several insights power exoskeletons. First, the availabil-

ity of the original components prior to transformation: pre-
transformed components can be used as (partial) behavioral
references, analyzable using a variety of logical approaches—
termed exoskeleton extractors—to extract valuable and un-
ambiguous properties about the component and supplant
statistical approaches such as LLMs. These properties can be
further morphed—via exoskeleton modifiers—to fit a target do-
main or language, or remove unsafe or undesirable aspects of
the representation. Second, these properties, viewed as com-
ponent projections, can be fed to one or more (and potentially
different) models, independently from the path the origi-
nal source takes through the model—effectively constrain-
ing statistical outputs, minimizing the risk of overfitting to
the source representation, and enabling independent checks.
And third, due to their inherently logical structure, exoskele-
tons remain a fine target for declarative human input via
declarative task- and domain-specific languages—including
logical constraints as shown in this paper.
Concretely, the exoskeleton approach analyzes a compo-

nent to extract relevant facts and feasible properties informed
by a logical query. It allows morphing and filtering of those
extracted facts and properties guided by the same query.
It then prompts an LLM instance, providing it only with
the extracted exoskeletons, to generate a new (potentially
transformed) component, which it will then check against
these properties. Exoskeletons treat component extraction
as a projection of the original component over language-
and system-level dimensions of facts, leveraging the LLM’s
high-dimensional internal representation [12, 18, 26] to lift
the projection back to a concrete implementation (Fig. 1).
The approach allows for tunable exoskeleton quality based
on coverage metrics [32].

The paper presents use cases that illustrate the promise of
exoskeletons in software trasnformation scenarios like com-
ponent hardening, lifting, translating, and offloading (§2),
describes the key components of an early exoskeleton proto-
type alongside preliminary results (§3), and concludes with
a discussion of possible directions to scale the presented

component projection: A component representation
via a set of lightweight, verifiable properties (e.g., input-
output examples or traces).
component exoskeleton: A tunable, partial specifi-
cation of a component; it is extracted before transfor-
mation, encodes a single invariant, and serves to guard
and support the transformation process.
exoskeleton extractor: Any analysis or reasoning
that derives verifiable properties from a component to
construct its exoskeleton.
exoskeleton modifier: A function that reshapes an
exoskeleton to fit a new domain or language, or drops
parts of it that are unsafe or undesirable to transfer.

Fig. 2. Glossary. Summary of key terms used in this paper.

char *Cmd_Args(int argc, char **argv) {
static char args[MAX_C];
for (int i = 1; i < argc; i++) {
strcat(args, argv[i]);
if (i < argc - 1) strcat(args, " "); }
return args; }

Fig. 3. Source component. A string formatting function that
concatenates command-line arguments into a single string.

techniques beyond this paper (§4). For reference, Fig. 2 sum-
marizes key terms used in this paper.

2 Use Cases
This section considers a variety of transformation tasks, rang-
ing from security hardening to kernel offloading and a va-
riety of target domains, ranging from string manipulation
to packet filtering. Using exoskeletons over declarative con-
straints safeguards the transformation of all components.
The outputs shown are drawn from exo, an early exoskele-
ton prototype under heavy development (§3).
Buffer-overflow hardening: Consider a C utility function
that handles string parsing (Fig. 3). It accepts an array of
strings, along with its size, and combines its elements into a
single string separated by spaces. Such string manipulation
code often results in bugs or buffer overflow vulnerabili-
ties [1, 2]. A refactoring may involve hardening this function
against such vulnerabilities.

Some realizations: the function is pure, meaning its behav-
ior can be fully described by input-output examples; more-
over, if a buffer overflow exists, there must be inputs that
trigger it. Below is a query written in the proposed DSL
that hardens the function against such inputs. The query
requires the regenerated component p_ to exhibit the same
input-output behavior on representative inputs, but have
non-faulty behavior on inputs that cause a segmentation
fault to the original component p.



Guarding LLM-aided Software Transformation Tasks via Component Exoskeletons PACMI ’25, October 13–16, 2025, Seoul, Republic of Korea

fsignt(p_, S) :- fsignt(p, S).
graph(p_, I, O) :- graph(p, I, O), { crash(p, I); }.
#not crash(p_, I), graph(p_, I, _).

The approach starts by generating potential exoskeletons—
extracting the function signature S and a set of input-output
pairs I, O from the function. The signature is extracted by
the fsignt plugin, by parsing the original library’s source
code, and input-output pairs by the graph plugin, which
prompts an LLM instance to generate values that exercise
the function. The crash plugin signals graph’s input gener-
ator to provide inputs that induce segmentation faults, and
filters those that actually do. This information around the
component populates a fact database, which contains all
extracted facts about the component or given by the user
through their query. The generated set of input-output pairs
and the function’s signature are then used to prompt an LLM
instance which in turn generates a transformed, behaviorally
equivalent component. A verification phase confirms that
(1) the input-output behavior of the transformed component
on the original set of inputs I remains the same and does not
crash on the crash-inducing inputs and (2) the function signa-
ture is preserved. The relevant fragment of the transformed
component looks as follows:
// ...
for (i = 1; i < argc; i++) {

strncat(args, argv[i], remaining);
remaining = MAX_C - strlen(args) - 1;
if (i != argc - 1 && remaining > 0) {

strncat(args, " ", remaining);
remaining = MAX_C - strlen(args) - 1;

} }
return args;

Cross-language lifting: Building on the same component,
consider the scenario of cross-language translation, where
the task is to lift the C component to JavaScript.
The following query specifies that the transformed com-

ponent p_ must be implemented in JavaScript and must pre-
serve observable behavior over a representative set of inputs.
language(p_, js).
graph(p_, Ijs, Ojs) :- graph(p, Ic, Oc),

tr(Ic, Ijs), tr(Oc, Ojs).

To bridge differences in representation between JavaScript
and C, the query includes the tr predicate to convert each
input and output into a practically equivalent one in the
target language. The corresponding tr plugin invokes a
fine-tuned transformer-based model which excels in this
domain [27]. Errors are detected during verification when
the transformed component is run on Ijs and its outputs
compared to Ojs. Based on the query, graph invokes tr to
produce corresponding JavaScript representations of each
example so that the translated function will reproduce iden-
tical string-formatting behavior. Prompting an LLM with the
translated input-output pairs and the target language results
in the following code:

float Q_rsqrt(float number) {
long i; float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F; y = number;
i = * ( long * ) &y; // evil bit level hack
i = 0x5f3759df - ( i >> 1 );
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) );
return y; }

Fig. 4. Source component. An unidiomatic C implementation of
the fast inverse square root function popularized by Quake III [7].

function cmdArgs(argv) {
return argv.slice(1).join(" ");

}

The regenerated component has a slightly different signa-
ture than the original, since JavaScript arrays include built-in
information about their length, which makes the argc argu-
ment obsolete. The synthesis backend had the freedom to
make this change since the query did not specify preserving
the function’s signature.
Idiomatization: Consider the fast inverse square root rou-
tine, originally developed for the Quake III engine (Fig. 4).
The implementation exploits type punning to manipulate
IEEE floats at the bit level—a technique that relies on unde-
fined behavior and reduces portability. The transformation
goal here is to replace this implementation with a more id-
iomatic one. The following query uses lines of code as a
coarse metric of idiomaticity, where idiomatic patterns are
considered to produce more concise code.
graph(p_, I, O) :- graph(p, I, O).
#min N: len(p_, N).

The system will regenerate the component, minimizing this
metric while preserving observable behavior over a set of
nominal inputs. The properties passed to the synthesis en-
gine are then ones extracted from graph and len. In this case,
where the goal is to optimize an aspect of the component—its
length—the system re-prompts the model to regenerate the
component until it can make no further improvements after
two consecutive transformations:
#include <math.h>
float Q_rsqrt(float number) {

return 1.0f / sqrtf(number); }

The synthesized implementation is easier to verify, portable
across compilers, and avoids undefined behavior.
Offloading packet filtering to eBPF : Consider a utility li-
brary that filters incoming packets by destination port (Fig. 5).
To avoid the overhead of user-kernel crossings, a transfor-
mation from a userspace component to one that runs in the
kernel using eBPF [28] has the potential to offer significant
performance benefits. The query below offloads this function
to an eBPF component attached to the socket.
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bool filter_packet(const struct packet *pkt) {
return (pkt->port == 80 || pkt->port == 443); }

Fig. 5. Source component. Userspace packet filter.

graph(p_, Ipkt, Opkt) :- graph(p, I, O),
tr(I, Ipkt), tr(O, Opkt).

ebpf(p_, socket).

The graph plugin extracts the input-output behavior of the
original component, while tr translates the inputs I and
outputs O to kernel-compatible representations. During veri-
fication, the ebpf plugin compiles and loads the regenerated
component, attaches it to a raw socket using libbpf, and
runs it under controlled traffic replay to eventually result in
the following code (simplified):
SEC("socket")
int filter_prog(struct __sk_buff *skb) {
// ...
return (tcp->dest == __constant_htons(80) ||
tcp->dest == __constant_htons(443)) * pkt_size; }

Contrary to plain LLM assistance, the exoskeleton approach
compares the results to those of the original user-space fil-
ter on the same packet traces, runs the eBPF component
against the eBPF verifier to confirm it passes, and updates
the application to load and attach the eBPF program.

3 Key Elements & the Exo Prototype
To handle the diversity of transformation tasks and domains
in which LLMs are used, an exoskeleton system combines
(1) domain- and task-specific extensibility, (2) a high-level
declarative language for querying facts about components,
and (3) direct LLM interaction through an increasingly con-
strained feedback loop. The exo prototype implements sim-
ple versions of all three elements (Fig. 6), including seven
extensions. It has been applied to a small collection of trans-
formation tasks to gather preliminary results.
Key elements: First, an exoskeleton system needs to be
decoupled into a core and several extensions collecting facts
related to the domain and the task at hand.

These extensions are structured in a way that combines (1)
extraction which obtains facts about the original component
via combinations of static, dynamic, or hybrid analyses (e.g.,
input-output examples or system-call traces) or transforms
an extracted fact to a new equivalent fact about the tar-
get component; (2) checking that validates the transformed
component against task-specific properties by applying the
corresponding analyses to the transformed component and
comparing the results; and (3) collection of all the extracted
and confirmed facts into a query-able database for intra- and
inter-extension consumption. While the space of possible
combinations poses an intractability challenge, the focus
on practically significant subsets combined with additional
crowdsourcing from several communities is promising, sup-
ported by exo’s preliminary results.

Query
Exoskeleton(s)

Component
Verification Component'

Unsat. query constraints

LLM
Synthesis

Fig. 6. High-level architecture. A component and a declarative
query serve as input. Exoskeletons are extracted from the compo-
nent, guided by the query, and passed to an LLM-based synthesis
engine. After a verification and feedback loop, the engine produces
the transformed component.

The database of analysis facts is accessible by a high-level
declarative query language injecting reasoning logic that is
agnostic to the transformation back-end. This Datalog-like
query language allows describing transformation intent as
logical constraints over component properties. These queries
are resolved against—but also feed back to—the database of
extracted facts, representing a space of behaviors that must
be preserved, eliminated, or optimized.
Finally, a transformation-and-validation driver interacts

with the LLM to explore transformed components that better
match the required properties. A failure triggers a retry,
augmenting the LLM prompt with additional information
about the properties that were not satisfied. The system
either converges towards success or issues an error.
The exo prototype: These elements inform the design of a
preliminary exoskeleton prototype, exo. The exo prototype
is developed in Python v3.13, uses pluggy [20] to define
pluggable hooks, compiles queries to Clingo [9], interfaces
with the clasp solver [10], and uses GPT-4o [23] as the
synthesis back-end.

It implements seven pluggable exoskeleton extractors and
modifiers written in Python, covering the aforementioned
use cases (§2) as well as additional ones seen in the eval-
uation: graph, tr, len, sys_trc, crash, fsignt, and ebpf.
The exo prototype is 364 LoC; its extensions between 9–143
LoC. A more sophisticated prototype is under development.
Preliminary results: A small-scale evaluation indicates
feasibility and trade-offs. The evaluation consists of 37 trans-
formation tasks spanning language translation, de-obfuscation,
and security hardening (Tab. 1). The target components are
drawn from sources such as the Rosetta Code project [24],
popular npm and PyPi packages [3, 4], high-profile supply-
chain attacks [5, 22], and obfuscated programs from the
IOCCC [15]. A transformation is considered successful when
the target component (1) satisfies all specified properties, (2)
passes all developer tests, and (3) is deemed correct via man-
ual inspection.

Overall, exo succeeds in all but two cases: (1) a utility func-
tion that modifies its arguments in-place—something not re-
flected in its input-output examples and thus not preserved
after transformation; (2) an obfuscated prime-checking pro-
gram whose complex output format was not fully captured,
with the primality test itself correctly regenerated. It suc-
ceeds in all other cases, including an impressive supply-chain
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Tab. 1. Benchmark summary. The table summarizes the number
of components (col. 2), their range in lines of code (col. 3), and
successes using exo or an LLM-only approach (cols. 4–5).

Benchmark 𝑛 LoC ✓𝐿𝑀 ✓exo Purpose Sources

RosettaCode 16 1–155 16 16 Translation [24]
Utilities 13 2–577 13 12 Parity [3, 4]
SSCA 3 30–214 0 3 Purification [5, 22]
IOCCC 2 13–214 0 1 Lifting [15]
Other 3 16–280 1 3 multiple Cf. §2

Total 37 30 35

security case where exoskeletons drive the LLM to push ma-
licious side-effects out of the transformation scope, while
preserving legitimate functionality. Runtime ranges between
25.9–64.2s (avg. 43.63s), with 1–3 synthesis attempts (avg.
2). The verification loop caught mistakes related either to
incorrect function input/output types, or missed edge-cases.

Compared to exo, an LLM-only approach that prompts a
model (in the experiments, GPT-4o) with each component’s
source code and a natural-language description of each task
faces significant difficulties beyond simple translations and
refactoring. For example, transforming the leetlog com-
ponent [22] maintains a malicious credential exfiltration
behavior that looks as if it is part of the intended behav-
ior. On the Q_rsqrt component [7], the generated output
overfits, transferring details such as bit manipulation to the
transformed component.

4 Discussion
Scaling exoskeleton techniques beyond the cases discussed
earlier requires solving several challenges.
A transformation system supported by component ex-

oskeletons is unable to offer partial success in cases when
no satisfactory candidates have been found. While all-or-
nothing semantics is useful in cases at the “all” end of the
binary spectrum, degradation might not be graceful enough
for practical LLM scenarios.

Going beyond pure, stateless components will require bal-
ancing query verbosity (e.g., declaring statefulness), while
also balancing the expressiveness of potential exoskeletons
under the LLM’s limited context. With similar trade-offs,
addressing non-deterministic components may require ex-
oskeletons that encode probabilistic guarantees, offering par-
tial but useful constraints on behavior.
In terms of scalability, in its current form, the exo proto-

type must be used as a surgical tool, applied at function level.
Straightforward infrastructure could allow pointing exo to a
larger module and iteratively regenerating it piece-by-piece,
but inter-procedural properties and interactions would re-
quire more sophisticated exoskeletons and reasoning.
A significant fraction of the techniques behind exoskele-

tons are language-agnostic, including the logic-based query
engine and exoskeletons such as input-output pairs and

traces. Other techniques, e.g., the extraction and checking
phases of exo’s extensions are language-aware. This lan-
guage awareness complicates interactions with the target
components in ways that LLMs fundamentally avoid. Fortu-
nately, adding support for most languages is surmountable
as long as analyses exist that can be used in a pluggable
fashion—by invoking them as opaque functions applied to
the target components. Language translation is a promising
approach towards this direction, further capitalizing on the
techniques described so far: an analysis that operates on one
language is applicable on other languages by performing an
inverse translation, extracting information about the trans-
lated component’s properties in the latter domain, and then
applying other stages on the original component. The effec-
tiveness of this approach depends on how well properties
translate across languages—for example, memory safety is
a property that is meaningful across only some languages.
Fortunately, many properties that end up being useful in
practice such as commutativity, termination, idempotence,
and purity can be encoded across many languages.
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