
UNIVERSITY OF PATRAS - SCHOOL OF ENGINEERING
DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Division: Electronics and Computers
Lab: Interactive Technologies Laboratory

Diploma Thesis

of the Department of Electrical and Computer Engineering student of the
school of engineering of the University of Patras

Evangelos Lamprou

registration number: 1066519

Title

Design, Implementation, and Evaluation of a
Framework for Applying Answer Set Programming in

Games

Supervisor
Associate Professor Christos Fidas, University of Patras

Patras, June 2023

CERTIFICATION

It is certified that the Diploma Thesis titled

Design, Implementation, and Evaluation of a
Framework for Applying Answer Set Programming in

Games

of the Department of Electrical and Computer Engineering
student

Evangelos Lamprou

(Registration Number: 1066519)

was presented publicly at the Department of Electrical and
Computer Engineering at

5/7/2023

The Supervisor

Christos Fidas
Associate Professor

The Director of the Division

Grigorios Kalivas
Professor

Details of Diploma Thesis

Title: Design, Implementation, and Evaluation of a
Framework for Applying Answer Set Programming in

Games

Student: Evangelos Lamprou

Examining commitee
Associate Professor, Christos Fidas,

University of Patras

Professor, Pavlos Peppas,
University of Patras

Teaching and Research Staff, Christos Sintoris,
University of Patras

Labs
Interactive Technologies Laboratory

Period of thesis completion:
March 2022 - June 2023

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ

Τομέας: Τομέας Ηλεκτρονικής και Υπολογιστών
Εργαστήριο: Interactive Technologies Laboratory

Διπλωματική Εργασία
του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας
Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Ευάγγελου Λάμπρου του Νικολάου

αριθμός μητρώου: 1066519

Θέμα

Σχεδιασμός, Υλοποίηση και Αξιολόγηση Πλαισίου
για την Εφαρμογή του Προγραμματισμού Συνόλου

Απαντήσεων σε Παιχνίδια

Design, Implementation, and Evaluation of a
Framework for Applying Answer Set Programming in

Games

Επιβλέπων
Αναπληρωτής Καθηγητής Χρήστος Φείδας, Πανεπιστήμιο Πατρών

Πάτρα, Ιούνιος 2023

ΠΙΣΤΟΠΟΙΗΣΗ

Πιστοποιείται ότι η διπλωματική εργασία με θέμα

Σχεδιασμός, Υλοποίηση και Αξιολόγηση Πλαισίου
για την Εφαρμογή του Προγραμματισμού Συνόλου

Απαντήσεων σε Παιχνίδια

του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και
Τεχνολογίας Υπολογιστών

Ευάγγελου Λάμπρου του Νικολάου

(Α.Μ.: 1066519)

παρουσιάτηκε δημόσια και εξετάστηκε στο τμήμα Ηλεκτρολόγων
Μηχανικών και Τεχνολογίας Υπολογιστών στις

5/7/2023

Ο Επιβλέπων

Χρήστος Φείδας
Αναπληρωτής Καθηγητής

Ο Διευθυντής του Τομέα

Καλύβας Γρηγόριος
Καθηγητής

Στοιχεία διπλωματικής εργασίας

Θέμα: Σχεδιασμός, Υλοποίηση και Αξιολόγηση
Πλαισίου για την Εφαρμογή του Προγραμματισμού

Συνόλου Απαντήσεων σε Παιχνίδια

Φοιτητής: Ευάγγελος Λάμπρου του Νικολάου

Ομάδα επίβλεψης
Αναπληρωτής Καθηγητής Χρήστος Φείδας,

Πανεπιστήμιο Πατρών

Καθηγητής Παύλος Πέππας,
Πανεπιστήμιο Πατρών

Ε.ΔΙ.Π Χρήστος Σιντόρης,
Πανεπιστήμιο Πατρών

Εργαστήρια
Interactive Technologies Laboratory

Περίοδος εκπόνησης της εργασίας:
Μάρτιος 2022 - Ιούνιος 2023

Περίληψη

Η βιομηχανία των βιντεοπαιχνιδιών εξελίσσεται συνεχώς, με νέους τρόπους
δημιουργίας παιχνιδιών να αναπτύσσονται. Ωστόσο, ακόμα και με τη διαθεσιμό-
τητα ισχυρών μηχανών δημιουργίας παιχνιδιών (game engines), οι προγραμμα-
τιστές εξακολουθούν να χρειάζονται χρόνο και προσπάθεια για να υλοποιήσουν
κοινά χαρακτηριστικά παιχνιδιών, όπως βασική τεχνητή νοημοσύνη, αλγορίθ-
μους εύρεσης διαδρομής και απλές παραλλαγές σκηνών. Αυτό μπορεί να δυ-
σκολέψει τους δημιουργούς παιχνιδιών στο να επικεντρωθούν στον πυρήνα του
παιχνιδιού και το περιεχόμενό του, ειδικά αν δεν είναι έμπειροι προγραμματι-
στές ή δεν ενδιαφέρονται για την ανάπτυξη πολύπλοκων αλγορίθμων. Επιπλέον,
η υλοποίηση τέτοιων χαρακτηριστικών συνήθως συνδέεται στενά με τη λογική
και την αρχιτεκτονική του παιχνιδιού, καθιστώντας δυσχερή την επαναχρησιμο-
ποίηση του κώδικα.

Η εργασία αυτή προτείνει μια προσέγγιση στην ανάπτυξη παιχνιδιών όπου
τμήματα της λογικής του παιχνιδιού γράφονται σε μια δηλωτική γλώσσα προ-
γραμματισμού. Δεν απορρίπτουμε τη χρήση διαδικαστικού προγραμματισμού,
αλλά προτείνουμε εργαλεία που μπορούν να αποτελέσουν μέρος και να ενισχύ-
σουν τη διαδικασία ανάπτυξης παιχνιδιών. Συγκεκριμένα, αυτή η έρευνα επικε-
ντρώνεται στην εφαρμογή του Answer Set Programming (ASP), μιας δηλωτικής
προγραμματιστικής παραδοχής, στην ανάπτυξη βιντεοπαιχνιδιών. Η μελέτη δεί-
χνει πώς μπορεί να χρησιμοποιηθεί το ASP ως μέρος της διαδικασίας ανάπτυξης
παιχνιδιών, παρέχοντας νέες δυνατότητες σχεδιασμού και υλοποίησης.

Επισημαίνουμε την προσαρμοστικότητα του ASP σε μια ευρεία γκάμα προ-
βλημάτων και αναφερόμαστε στην ικανότητα του επιλυτή ASP να παράγει λύσεις
σε λογικό χρονικό διάστημα. Επιπλέον, παρουσιάζονται βοηθητικά εργαλεία που
μπορούν να ενισχύσουν την εμπειρία προγραμματισμού με ASP.

Παρουσιάζεται ένα πλαίσιο (framework) που ενσωματώνει έναν επιλυτή
ASP σε μηχανή παιχνιδιών. Μέσα σε αυτήν, ο σχεδιαστής μπορεί να καθο-
ρίσει τους κανόνες που διέπουν ένα συγκεκριμένο μηχανισμό παιχνιδιού, όπως η
τοποθέτηση αντικειμένων ή η συμπεριφορά των χαρακτήρων. Ο επιλυτής παρά-
γει στη συνέχεια τις αντίστοιχες λύσεις οι οποίες ερμηνεύονται από τη μηχανή
παιχνιδιού. Το πλαίσιο έχει σχεδιαστεί για να είναι αρθρωτό, απλό και επεκτά-
σιμο.

Τέλος, παρουσιάζονται ορισμένες εφαρμογές του ASP σε πλαίσιο παιχνι-
διών και αξιολογείται η εφικτότητα και αποτελεσματικότητά της προτεινόμενης
μεθόδου εκτελώντας μία εμπειρική μελέτη με χρήστες.

v

Extended Abstract in Greek

Εισαγωγή
Η βιομηχανία παιχνιδιών διευρύνεται και εξελίσσεται διαρκώς, με νέους τρό-

πους ανάπτυξης παιχνιδιών να αναπτύσσονται. Οι μηχανές παιχνιδιών προσφέ-
ρουν πληθώρα εργαλείων και χαρακτηριστικών που μπορούν να βοηθήσουν τους
σχεδιαστές παιχνιδιών να δώσουν ζωή στις ιδέες τους [1]. Ωστόσο, στις περισσό-
τερες μηχανές ανάπτυξης παιχνιδιών, οι προγραμματιστές παιχνιδιών αντιμετω-
πίζουν εντολές προστακτικού προγραμματισμού. Ο παραδοσιακός προστακτικός
προγραμματισμός είναι μια προγραμματιστική παραδοχή που καθορίζει εντολές
βήμα προς βήμα για τον υπολογιστή να εκτελέσει χρησιμοποιώντας μεταβλητές,
βρόχους και συνθήκες.

Ο δηλωτικός προγραμματισμός επικεντρώνεται στο τι πρέπει να επιτύχει
ένα πρόγραμμα, χρησιμοποιώντας υψηλού επιπέδου αφαιρέσεις για να ορίσει τον
τομέα του προβλήματος, επιτρέποντας στον υπολογιστή να φτάσει αυτόματα στη
λύση.

Ο Προγραμματισμός Συνόλου Απαντήσεων (Answer Set Programming -
ASP) [31] είναι μια δηλωτική παραδοχή προγραμματισμού που έχει επιδείξει ικα-
νότητα στην επίλυση πολύπλοκων προβλημάτων σε διάφορους τομείς, όπως η
ανάθεση υπαλλήλων σε ομάδες [87], νομικά συμπεράσματα [5], η επίλυση σφαλ-
μάτων διαμόρφωσης πακέτων λογισμικού [38] και η αυτόματη σύνθεση μουσι-
κής [9].

Δηλωτικές τεχνικές έχουν ήδη εφαρμοστεί σε πλαίσιο παιχνιδιών [2], με πα-
ραδείγματα που κυμαίνονται από εμπορικό λογισμικό όπως το παιχνίδι F.E.A.R
[82] και το Halo 3 [55] μέχρι πιο ερευνητικές προσεγγίσεις, όπως η Γλώσσα Περι-
γραφής Παιχνιδιών (GDL) [89] και η μηχανή Ludocore [99], όπου σημασιολογίες
παιχνιδιών κωδικοποιούνται μέσα σε δηλωτικά λογικά πλαίσια. Τώρα, σχετικά
με αυτή την εργασία, το ASP συγκεκριμένα έχει δει εφαρμογές σε παιχνίδια.
Έχουν αναπτυχθεί πράκτορες που μπορούν να επιλύσουν γρίφους [33,103,114]
ή να παίξουν παιχνίδια όπως το Angry Birds [18]. Ο εργασίες [4] (δημιουργία
πιστών για το παιχνίδι Portal 2) και [99] (κατασκευή λαβυρίνθων) εξετάζουν
την εφαρμογή του ASP για τη δημιουργία περιεχομένου, επικεντρώνοντας στη
δημιουργία puzzle levels ενώ ταυτόχρονα υπογραμμίζεται πώς το ASP μπορεί να
λειτουργήσει ως ένα εκφραστικό εργαλείο για τη δημιουργία παραγωγών περιε-
χομένου παιχνιδιών με χρονικά αποδοτικό τρόπο.

Αυτή η εργασία αναπτύσσει ένα πλαίσιο για την ανάπτυξη παιχνιδιών αξιο-
ποιώντας την παραδοχή ASP και παρουσιάζει την προστιθέμενη αξία του στο
πλαίσιο συγκεκριμένων περιπτώσεων χρήσης στον προγραμματισμό παιχνιδιών.
Συγκεκριμένα, παρουσιάζουμε αποτελέσματα αξιολόγησης που υπογραμμίζουν
ότι η χρήση δηλωτικών εργαλείων μπορεί να επιταχύνει σημαντικά τον χρόνο

vi

ανάπτυξης και να απαλλάξει τους προγραμματιστές παιχνιδιών από την ανάγκη
κατανόησης και υλοποίησης πολύπλοκων αλγορίθμων, οδηγώντας σε πιο ευέλι-
κτο και επαναχρησιμοποιήσιμο κώδικα, ενώ ταυτόχρονα επιτρέπει μια διαφορε-
τική δημιουργική προσέγγιση στην ανάπτυξη παιχνιδιών.

Κίνητρο και Συνεισφορά
Σε μικρές ομάδες ανάπτυξης παιχνιδιών (1-5 άτομα), ο ρόλος του προ-

γραμματιστή και του σχεδιαστή συχνά συγχωνεύονται. Αυτό σημαίνει ότι ο
σχεδιαστής του παιχνιδιού συχνά πρέπει να διακόψει τη δημιουργική διαδικασία
της τελειοποίησης και δοκιμής μιας ιδέας για να υλοποιήσει πολύπλοκη λογική.
Υπάρχει ακόμα έλλειψη εργαλείων κατάλληλων για την ταχεία πρωτότυπη ανά-
πτυξη. Ως λύση, προτείνουμε ένα πλαίσιο για τη χρήση του ASP στα παιχνί-
δια, σχολιάζουμε πτυχές της ανάπτυξης παιχνιδιών που είναι κατάλληλες για
υλοποίηση με ASP και παρουσιάζουμε μερικές μελέτες περιπτώσεων. Επίσης,
πραγματοποιούμε αξιολόγηση του ASP με προγραμματιστές σε διάφορα επίπεδα
εξοικείωσης με το παράδειγμα προγραμματισμού. Όσο γνωρίζουμε, μια μελέτη
χρηστών για τα πλεονεκτήματα της χρήσης του ASP για τη δημιουργία παιχνι-
διών δεν έχει πραγματοποιηθεί προηγουμένως.

Η εργασία είναι οργανωμένη ως εξής: Πρώτα παρουσιάζουμε τις βασικές
γνώσεις για την κατανόηση της δηλωτικής παραδοχής προγραμματισμού ASP.
Στη συνέχεια, παρουσιάζουμε το προτεινόμενο πλαίσιο που μπορεί να χρησιμο-
ποιηθεί από προγραμματιστές παιχνιδιών και, τέλος, παρουσιάζουμε τα αποτε-
λέσματα της μελέτης αξιολόγησης.

Θεωρία Προγραμματισμού Συνόλων Απαντή-
σεων

Ο Προγραμματισμόυς Συνόλων Απαντήσεων (Answer Set Programming -
ASP) [31] είναι ένα παράδειγμα επίλυσης προβλημάτων με ρίζες στο λογικό προ-
γραμματισμό και τον μη-μονοτονικό συλλογισμό. Η εργασία του Gelfond [42]
διατύπωσε για πρώτη φορά τη σημασιολογία των σταθερών μοντέλων και τον
πυρήνα της γλώσσας ASP. Όπως φαίνεται στο σχήμα 1, το προγραμματιστικό
μοντέλο του ASP είναι ένα όπου ο προγραμματιστής μοντελοποιεί το πεδίο του
προβλήματος, με τη λύση να αναλαμβάνεται από ένα πρόγραμμα επίλυσης. Η προ-
γραμματιστική διαδικασία γίνεται σε μια οικογένεια γλωσσών συχνά αποκαλού-
μενες ως AnsProlog [41]. Στην εργασία μας, θα χρησιμοποιήσουμε τη γλώσσα
εισόδου του Clingo [37], ενός συστήματος το οποίο περιλαμβάνει έναν αποδοτικό
επιλυτή με μια πλούσια συλλογή βιβλιοθηκών που βοηθούν στην ένταξή του με
εξωτερικά εργαλεία.

Η σύνταξη είναι παρόμοια με αυτήν της Prolog, μιας δημοφιλούς γλώσσας
λογικού προγραμματισμού. Υπάρχει μια ενοποιημένη προσέγγιση για να αναπα-

vii

Σχεδίαση

Πρόγραμμα ASP Σύνολα Απαντήσεων

Δημιουργήματα

Μοντελοποίηση
Επίλυση

Ενσωμάτωση

Εμπνέουν

Σχήμα 1: Ροή ανάπτυξης παιχνιδιού με τη βοήθεια των εργαλείων ASP. Ο σχε-
διαστής ξεκινά με έναν αρχικό στόχο, τον σχεδιασμό ενός μηχανισμού/συμπερι-
φοράς/συνόλου τεχνουργημάτων, που οδηγεί σε μια προδιαγραφή σε μορφή ενός
προγράμματος ASP. Οι λύσεις του προγράμματος μπορούν να βοηθήσουν στην
περαιτέρω βελτίωση του αρχικού σχεδιασμού, καθώς ανεπιθύμητες ή απούσες
πτυχές γίνονται εμφανείς μετά την ένταξη των δημιουργημάτων με το υπόλοιπο
παιχνίδι [98].

ραστήσει ο προγραμματιστής τόσο γνωστικές όσο και δεδομένου τύπου γνώσεις
μέσω λογικών όρων. Οι όροι αυτοί μπορούν να είναι ατομικά στοιχεία όπως ονο-
μασμένα σύμβολα, αριθμοί, συμβολοσειρές ή σύνθετα στοιχεία που αποτελούνται
από έναν φορέα (ένα σύμβολο) και μια λίστα λογικών όρων ως ορίσματα. Χρησι-
μοποιώντας συλλογές λογικών όρων (καταχώρηση 1), μπορεί να αναπαρασταθεί
εύκολα οποιαδήποτε δομή δεδομένων που σχετίζεται με την κατάσταση ενός
παιχνιδιού.
Καταχώρηση 1: Ένα σύνολο γε-
γονότων που περιγράφουν στοιχεία
του παιχνιδιού/κατάσταση του παι-
χνιδιού.
object(house).
position(player, vec3(1, 0, 1)).
size(house, vec3(4, 4, 4)).
tile(1, 1, water).
move(player, left).
object(orc).
object(frog).

Καταχώρηση 2: Λογικοί κανόνες
που περιγράφουν τις σχέσεις μεταξύ
οντοτήτων και τη συμπεριφορά τους.
damaged(player) :− attacked(player).
damaged(player) :− fall(player).
hostile(X) :− enemy(X).
friend(X) :− object(X), not hostile(X).
pos(player,X+1,Y,T+1) :− pos(player,X,Y,T),

move(player,right).

Στο παράδειγμα της καταχώρισης 1, παρουσιάζεται ένα σύνολο γεγονότων
που περιγράφουν την κατάσταση του παιχνιδιού. Για πιο περίπλοκη συλλογι-
στική, ο συγγραφέας του ASP προγράμματος μπορεί να προσθέσει λογικούς
κανόνες που μπορούν να εκφραστούν χρησιμοποιώντας τον τελεστή :-. Το αρι-
στερό μέρος ενός κανόνα ονομάζεται “κεφάλι” (head) και το δεξί μέρος “σώμα”
(body). Το κεφάλι ενός κανόνα είναι αληθές αν το σώμα του είναι αληθές. Εντός
ενός κανόνα, τα κόμματα μεταξύ ατομικών στοιχείων υποδηλώνουν τη λογική
λειτουργία “και” (and), ενώ η επανάληψη του ίδιου κεφαλαίου κανόνα με διαφο-
ρετικά σώματα υποδηλώνει τη λογική λειτουργία “ή” (or). Οι κανόνες μπορούν
να χρησιμοποιηθούν για να ορίσουν τις επιπτώσεις ενεργειών ή για να εξάγουν
ιδιότητες αντικειμένων του παιχνιδιού. Στους κανόνες, ένα ατομικό στοιχείο

viii

που αρχίζει με κεφαλαίο γράμμα υποδηλώνει μια μεταβλητή. Στο παράδειγμα της
καταχώρισης 2, παρουσιάζονται λογικοί κανόνες που περιγράφουν τις σχέσεις
μεταξύ των οντοτήτων και τη συμπεριφορά τους.

Οι δυνατότητες επιλογής/δημιουργίας του ASP προέρχονται από τη δυνα-
τότητα του συγγραφέα του προγράμματος να επιτρέπει στον επιλυτή ASP να
πραγματοποιεί επιλογές μεταξύ ενός συνόλου ατομικών στοιχείων. Αυτά μπο-
ρούν να κωδικοποιηθούν χρησιμοποιώντας “κανόνες επιλογής”.
Καταχώρηση 3: Ένας
κανόνας επιλογής.
{chosen(X,Y) : person(X)} :−

house(Y).

Καταχώρηση 4: Ένας
κανόνας ακεραιότητας.
:− chosen(X, Y), chosen(Z, Y),

X == Y.

Καταχώρηση 5: Οδηγία
βελτιστοποίησης.
#minimize{C : cost(E,C)}.

Ο κανόνας επιλογής στην καταχώρηση 3 μεταφράζεται ως “για κάθε σπίτι
Y , επέλεξε ανάμεσα στο σύνολο ατομικών στοιχείων chosen(X,Y), όπου X
είναι ένα πρόσωπο”. Αυτό το πρόγραμμα μπορεί να παράγει πολλά σύνολα απα-
ντήσεων, μία για κάθε πιθανή ανάθεση μεταβλητής. Ωστόσο, μερικές από τις δη-
μιουργηθείσες απαντήσεις είναι μη έγκυρες στο πλαίσιο του προβλήματός μας.
Για παράδειγμα, δε θα πρέπει να επιτρέπεται δύο άνθρωποι να έχουν επιλέξει
το ίδιο σπίτι. Τέτοιοι κανόνες μπορούν να κωδικοποιηθούν με τη μορφή “περιο-
ρισμών ακεραιότητας” (integrity constraints) (καταχώρηση 4), οι οποίοι υπο-
δεικνύουν τι δεν επιτρέπεται να ισχύει στα παραγόμενα σύνολα απαντήσεων.
Αυτό παρέχει ένα μηχανισμό για το “φιλτράρισμα” μη-επιθυμητών απαντήσεων.
Σε προβλήματα όπου μπορεί να υπάρχουν πολλές έγκυρες απαντήσεις, μπορούμε
επίσης να προσθέσουμε οδηγίες βελτιστοποίησης που καθοδηγούν τον επιλυτή
να εξάγει βέλτιστες απαντήσεις με βάση συγκεκριμένες μεταβλητές. Ο συγγρα-
φέας του προγράμματος μπορεί να χρησιμοποιήσει τις οδηγίες #minimize και
#maximize (καταχώρηση 5).

Για τον υπολογισμό των συνόλων απαντήσεων, τα προγράμματα ASP ει-
σάγονται σε επίλυτες ASP. Αυτοί οι επίλυτες παρέχουν υψηλής απόδοσης μη-
χανισμούς για την παραγωγή του συνόλου των έγκυρων απαντήσεων για το
συγκεκριμένο πρόβλημα. Ένας επίλυτης ASP μπορεί να θεωρηθεί ως ένα μαύρο
κουτί, με τους επιλυτές να είναι αντικαταστάσιμοι, υπό την προϋπόθεση ότι οι
σημασιολογία της γλώσσας εισόδου παραμένει ίδια.

Ευρετικές Εφαρμοσιμότητας και Μέθοδος
για την Εφαρμογή του ASP στη Διαδικασία
Ανάπτυξης Παιχνιδιών

Ένα σημαντικό στοιχείο του προτεινόμενου πλαισίου είναι ο καθορισμός
συγκεκριμένων ευρετικών σχεδιασμού παιχνιδιών που αποδεικνύουν την κα-
ταλληλότητα των στοιχείων παιχνιδιού για προγραμματιστικές προσεγγίσεις με
ASP. Προτείνουμε τις ακόλουθες αρχές/ευρετικές εφαρμογής:

ix

• Ευρετική Εφαρμογής ASP (Α) Συντομία: Ο ASP (και ο δηλωτι-
κός προγραμματισμός γενικότερα) μπορεί να μειώσει την πολυπλοκότητα
του λογισμικού [100], οδηγώντας σε πιο συνοπτικό κώδικα [12]. Ωστόσο,
αυτό απαιτεί ότι κατά τον σχεδιασμό ενός μηχανισμού παιχνιδιού, κωδικο-
ποιούνται μόνο τα σημαντικά του στοιχεία. Για παράδειγμα, σε ένα παιχνίδι
λαβύρινθου θα περιλαμβάνονται μόνο τα ουσιώδη στοιχεία όπως η διάταξη
του λαβυρίνθου, η αρχική θέση, η θέση του θησαυρού και οι κανόνες κί-
νησης.

• Ευρετική Εφαρμογής ASP (Β) Σχετικά Μικρός Χώρος Λύ-
σεων: Πρέπει να αποφεύγονται περιπτώσεις όπου ο χρόνος επίλυσης γίνε-
ται πολύ μεγάλος. Ένας μικρός χώρος λύσεων προκύπτει όταν η γεννήτρια
(generator)/πράκτορας (agent) έχει έναν περιορισμένο αριθμό επιλογών
για κάθε κανόνα επιλογής του προγράμματος ASP. Για παράδειγμα, ένας
σχεδιαστής θα πρέπει να επιλέξει έναν πράκτορα να κινηθεί σε μία από τις
τέσσερις κατευθύνσεις (πάνω, κάτω, αριστερά, δεξιά), αντί για το πλήρες
εύρος κινήσεων. Έπειτα, μπορεί να χρησιμοποιηθεί μια φυσική προσομοί-
ωση μέσω της μηχανής παιχνιδιού για να γίνει πιο φυσισκό-φανής η κίνηση.
Οι σχεδιαστές μπορούν επίσης να αντιμετωπίσουν αυτόν τον περιορισμό
διαμερίζοντας το πρόβλημα σε μικρότερα υπο-προβλήματα. Στην εργα-
σία [19], οι συγγραφείς διαχώρισαν τη ρουτίνα δημιουργία της τοπολογίας
ενός μπουντρουμιού από την τοποθέτηση περιεχομένου στο κάθε δωμα-
τίου, μειώνοντας έτσι τους χρόνους δημιουργίας, ενώ στο [86] οι διάφορες
καταστάσεις ενός πράκτορα (τρώει, κρύβεται, δρα) διαιρέθηκαν σε μικρό-
τερες μονάδες προγραμμάτων ASP, χρησιμοποιώντας μετα-σκέψη για να
αποφασίζεται ποια σχετικά μέρη της βάσης γνώσης θα χρησιμοποιηθούν
για την επίλυση την κάθε χρονική στιγμή.

• Ευρετική Εφαρμογής ASP (Γ) Αναδυόμενη Πολυπλοκό-
τητα: Καταλληλότερα είναι σενάρια όπου παρατηρούνται ενδιαφέρουσες
συμπεριφορές όταν οι πράκτορες αλληλεπιδρούν μεταξύ τους και με το πε-
ριβάλλον εντός του κόσμου του παιχνιδιού ή όταν τα παραγόμενα αντικεί-
μενα εκδηλώνουν ενδιαφέροντα μοτίβα που δεν έχουν κωδικοποιηθεί ρητά
στο πρόγραμμα ASP. Στο [82], όπου προστέθηκε ένα στρώμα δηλωτικού
σχεδιασμού στους πράκτορες του παιχνιδιού F.E.A.R, προέκυψαν πολύ-
πλοκες συμπεριφορές από τον συνδυασμό απλών στόχων και ενεργειών
μαζί με τη δυναμική κατάσταση του κόσμου του παιχνιδιού.

Επιπλέον, προτείνουμε μια τυποποιημένη μεθοδολογία ανάπτυξης (σχήμα 2)
που θα καθοδηγήσει φιλόδοξους προγραμματιστές στο να εφαρμόσουν με επιτυ-
χία το ASP στις εφαρμογές τους, παρέχοντας γενικές κατευθυντήριες γραμμές
προγραμματισμού που σχετίζονται με το μοντελοποίηση ASP. Βασιζόμαστε στο
παράδειγμα “μάντεψε και έλεγξε” [34].

x

Κόσμος του Παιχνιδιού

Λύτης ASP Πρόγραμμα ASP

Ένταξη στο Παιχνίδι

Λογικ
ά Ατόμ

α Εισόδ
ου Κανόνες/Περιορισμοί

Σύνολα Απαντήσεων
Συμπεριφορά Πράκτορα/Τεχνουργήματα

Σχήμα 2: Συνολική επισκόπηση της ένταξης ASP στη δημιουργία ενός μηχανι-
σμού παιχνιδιού. Ο Κόσμος του Παιχνιδιού περιλαμβάνει την τρέχουσα κατάσταση
του παιχνιδιού και τις πληροφορίες όλων των οντοτήτων μέσα σε αυτόν. Τα λο-
γικά άτομα εισόδου είναι τα δεδομένα που χρησιμοποιούνται για να περιγράψουν
την τρέχουσα κατάσταση. Αυτά, μαζί με τους κανόνες και τους περιορισμούς του
προγράμματος ASP, τροφοδοτούνται στον ASP επιλυτή, ο οποίος εξάγει σύνολα
απαντήσεων. Αυτά περιγράφουν λογική όπως οι ενέργειες που θα πρέπει να πά-
ρει ένας πράκτορας ή τη θέση πού θα πρέπει να τοποθετηθεί ένα αντικείμενο.
Έπειτα, μέσω μηχανισμών ένταξης, αυτά τα σύνολα απαντήσεων χρησιμοποιού-
νται για να ενημερώσουν τον κόσμο του παιχνιδιού.

1. Βήμα (α): Καθορισμός Ατόμων Εισόδου και Εξόδου: Το σύ-
νολο των ατόμων εισόδου παρέχει το πλαίσιο που απαιτείται για να παράξει
το ASP πρόγραμμα σωστά αποτελέσματα. Αυτά είναι συνήθως δυναμικές
πτυχές της εκτέλεσης του παιχνιδιού και αλλάζουν κατά την κάθε κλήση
του λύτη ASP. Παραδείγματα αυτών είναι η αρχική θέση ενός πράκτορα
ή η λίστα των αντικειμένων που πρέπει να τοποθετηθούν. Από την άλλη
πλευρά, τα άτομα εξόδου κωδικοποιούν τα αποτελέσματα που παράγονται
από τον λύτη και που θα ερμηνευθούν από την εκτέλεση του παιχνιδιού
ως τεχνάσματα ή συμπεριφορά πράκτορα. Αυτά περιλαμβάνουν πράγματα
όπως η κατεύθυνση στην οποία θα κινηθεί ένας πράκτορας στο επόμενο
βήμα ή η θέση στην οποία θα πρέπει να τοποθετηθεί ένα αντικείμενο.

2. Βήμα (β): Δημιουργία “Τυχαίων” Συνόλων Απαντήσεων:
Ο προγραμματιστής μπορεί να κατασκευάσει αρχικά ένα πρόγραμμα ASP
που αποτελείται από κανόνες επιλογής για τη δημιουργία μερικώς τυχαίων
αποτελεσμάτων, με βάση τα επιλαχόντα άτομα εξόδου. Παρόλο που τα
παραγόμενα αποτελέσματα μπορεί να είναι ατελή ή ακατάλληλα, αυτή η
προσέγγιση διευκολύνει τον εντοπισμό και την αντιμετώπιση δυνητικών

xi

τεχνικών προβλημάτων. Σε αυτό το στάδιο περιλαμβάνεται επίσης η δη-
μιουργία ενός οπτικοποιητή ή η ένταξη του λύτη με το παιχνίδι εκκινώντας
έτσι τη διαδικασία αποσφαλμάτωσης. Προτείνεται μια αρχιτεκτονική λογι-
σμικού για την ενσωμάτωση του ASP σε μηχανή παιχνιδιού στο [3].

3. Βήμα (γ): Προσθήκη Περιορισμών Ακεραιότητας/Οδηγιών
Βελτιστοποίησης: Με βάση τον τρέχοντα τομέα του προβλήματος,
είναι απαραίτητο να προστεθούν περιορισμοί ακεραιότητας και/ή οδηγίες
βελτιστοποίησης. Οι περιορισμοί παρέχουν άμεσο έλεγχο στα παραγόμενα
σύνολα απαντήσεων για να συμμορφώνονται τόσο με το σύνολο κανόνων
του παιχνιδιού όσο και με τις ιδέες του σχεδιαστή. Ανάμεσά τους, αν
χρειάζεται, ο λύτης μπορεί να παράγει τις πλέον βέλτιστες λύσεις βάσει
μιας μεταβλητής χρησιμοποιώντας κανόνες βελτιστοποίησης.

Απόδειξη Έννοιας και Μελέτες Περίπτωσης
Για να επιδείξουμε τις προαναφερθείσες ευρετικές της εφαρμογής του ASP

στην ανάπτυξη παιχνιδιών, σχεδιάσαμε μια σειρά από μελέτες περίπτωσης1.

Μελέτη Περίπτωσης (α): Δημιουργία Φυσικού Εδά-
φους σε Επίπεδο Πλακιδίων

Για τη δημιουργία εδάφους, τα παιχνίδια συνήθως ακολουθούν μια προσέγ-
γιση όπου μια συνάρτηση θορύβου όπως ο θόρυβος Perlin [84] χρησιμοποιείται
για να καθορίσει τον τύπο του τοπίου που θα τοποθετηθεί σε μια συγκεκρι-
μένη θέση (x, y). Αυτή η προσέγγιση έχει γνωρίσει μεγάλη υιοθέτηση στη βιο-
μηχανία των παιχνιδιών καθώς χρησιμοποιείται σε μεγάλους τίτλους όπως το
Minecraft [77]. Ωστόσο, αυτή η προσέγγιση, αν και αποδοτική, δεν επιτρέπει
υψηλά επίπεδα ελέγχου. Για παράδειγμα, ένας σχεδιαστής δεν μπορεί να καθο-
ρίσει ότι θέλει να τοποθετηθεί ένας συγκεκριμένος αριθμός βουνών ή ότι ένα
ποτάμι ρέει μέσα από μια συγκεκριμένη περιοχή. Χρησιμοποιώντας το ASP, μπο-
ρούμε να δημιουργήσουμε φυσικό-εμφανές τοπίο χρησιμοποιώντας μια υψηλής
έκφρασης γλώσσα. Οι ευρετικές συντομία και αναδυόμενη πολυπλοκό-
τητα, είναι παρούσες σε αυτό το παράδειγμα. Στο ASP πρόγραμμά μας, η τοπο-
θέτηση των πλακιδίων εντός του πλέγματος μπορεί να κωδικοποιηθεί από έναν
κανόνα επιλογής. Έπειτα, μέσω των περιορισμών ακεραιότητας, προσθέτουμε κα-
νόνες που εξαπλώνονται σε ολόκληρο το πλέγμα, δημιουργώντας ενδιαφέροντα
μοτίβα.

Η εφαρμογή της προτεινόμενης μεθοδολογίας μας λειτουργεί ως εξής:
1Ο πηγαίος κώδικας από τα παραδείγματά μας καθώς και τα έργα που αναπτύχθηκαν στη μελέτη χρηστών

μπορούν να βρεθούν στο https://github.com/vagos/asp-games.

xii

https://github.com/vagos/asp-games

1. Καθορίζουμε τα λογικά στοιχεία εξόδου, τα οποία είναι ο τύπος του πλακι-
δίου σε κάθε θέση του πλέγματος (ένα άτομο της μορφής tile(x, y, type)).
Τα ατομικά στοιχεία εισόδου αποτελούνται από προτάσεις που θα ελέγ-
χουν συγκεκριμένες πτυχές της δημιουργίας. Για παράδειγμα, ο προγραμ-
ματιστής μπορεί να εισαγάγει ένα δεδομένο της μορφής tile(1, 1, water)
που θα αναγκάσει τον γεννήτορα να τοποθετήσει το συγκεκριμένο τύπο
πλακιδίου σε αυτήν τη θέση.

2. Προσθέτουμε έναν κανόνα επιλογής που τοποθετεί ένα πλακίδιο τυχαίου
τύπου σε κάθε θέση του πλέγματος. Σε αυτό το σημείο, αναπτύσσουμε
επίσης ένα πρόγραμμα που παίρνει την έξοδο του επιλυτή και μεταφράζει
τα ατομικά στοιχεία εξόδου σε χρωματισμένα εικονοστοιχεία.

3. Η έξοδος του γεννήτορα ελέγχεται με χρήση περιορισμών ακεραιότητας.
Στο παράδειγμά μας, προσθέσαμε περιορισμούς όπου δεν μπορούν να αγ-
γίζουν πλακίδια “νερό” και “λάβα” ενώ πρέπει να υπάρχει επίσης ένα ποτάμι
που ρέει κατά μήκος της διαγωνίου.

(αʹ) Ένα τοπίο χωρίς κανόνες πε-
ριορισμού.

(βʹ) Ένα τοπίο στο οποίο τα πλα-
κίδια νερού και λάβας δεν αγγί-
ζουν ο ένας τον άλλον και υπάρ-
χει ένας ποταμός που διασχίζει το
πλέγμα.

Σχήμα 3: Παραδείγματα τοπίων που δημιουργήθηκαν από τον γεννήτορα.

Μελέτη περίπτωσης (β): Παιχνίδι Ποδοσφαίρου
Αναπτύξαμε ένα σενάριο παιχνιδιού που δείχνει πώς το ASP μπορεί να μο-

ντελοποιήσει δύο ομάδες αντιπάλων πρακτόρων και πώς το αποτέλεσμα είναι
ταυτόχρονα ενδιαφέρον και κατάλληλο. Η μέθοδός μας αποφεύγει την ανάγκη
υλοποίησης αλγορίθμων εύρεσης διαδρομής όπως ο A* [94] ή η εφαρμογή τεχνι-
κών Ενισχυτικής Μάθησης (Reinforcement Learning) [90], που μπορεί να είναι

xiii

δύσκολες στην ανάπτυξη και αποσφαλμάτωση κατά την προτυποποίηση του παι-
χνιδιού. Οι χαρακτηριστικές σχετικά μικρός χώρος λύσεων και ανα-
δυόμενη πολυπλοκότητα είναι παρόντες σε αυτήν τη μελέτη περίπτωσης.
Ο χώρος λύσεων μπορεί να ελεγχθεί με τη μείωση του αριθμού των χρονικών
βημάτων που μπορεί να “δει” ο πράκτορας στο μέλλον. Η αναδυόμενη πολύπλοκη
συμπεριφορά προέρχεται από το γεγονός ότι δεν θα ζητήσουμε ρητά από τον πρά-
κτορα να κλωτσήσει την μπάλα για να σκοράρει γκολ. Αντίθετα, εξηγούμε μέσω
λογικών κανόνων πώς μεταβάλλεται η τοποθεσία της μπάλας όταν κλωτσιέται
και επιτρέπουμε στον επίλυτη του ASP να παράγει μια νικηφόρα στρατηγική
βασιζόμενος σε αυτήν την πληροφορία.

1. Σε αυτήν τη μελέτη περίπτωσης, τα άτομα εισόδου είναι οι τοποθεσίες
κρίσιμων αντικειμένων του παιχνιδιού, όπως η θέση της μπάλας, των δύο
τερμάτων και των άλλων παικτών. Τα άτομα εξόδου θα είναι οι αποφάσεις
του πράκτορα για το πού να κινηθεί, εάν θα κλωτσήσει την μπάλα και προς
ποια κατεύθυνση.

2. Προσθέτουμε κανόνες επιλογής για τις δυνατές ενέργειες του πράκτορα.
Σε αυτό το σημείο, ενσωματώνουμε τον επίλυτη μέσα στη μηχανή παιχνι-
διού Godot [47], μεταφράζοντας τα άτομα εξόδου σε ενέργειες εντός του
παιχνιδιού.

3. Τέλος, προσθέτουμε περιορισμούς ακεραιότητας που κάνουν τους πράκτο-
ρες να αποφεύγουν τη σύγκρουση μεταξύ τους, καθώς και μια οδηγία
βελτιστοποίησης που προσπαθεί να ελαχιστοποιήσει την απόσταση της
μπάλας από το τέρμα του αντιπάλου. Η ακολουθία ενεργειών που θα ακο-
λουθήσει ένας πράκτορας θα είναι αυτή που θα οδηγήσει την μπάλα να
είναι πιο κοντά στο αντίπαλο τέρμα.

Εμπειρική μελέτη
Ερευνητικά ερωτήματα

Τα κύρια ερευνητικά ερωτήματα της εμπειρικής μελέτης ήταν να διερευνή-
σουμε: ΕΕ1) Εάν οι προαναφερθείσες ευρετικές εφαρμοσιμότητας μπορούν να
επιβεβαιωθούν από τρίτους σχεδιαστές παιχνιδιών μετά από πειραματική εφαρ-
μογή στα δικά τους σχέδια παιχνιδιών, ΕΕ2) εάν η προτεινόμενη μεθοδολογική
προσέγγιση του ASP υποστηρίζει τη δημιουργικότητα στον σχεδιασμό παιχνι-
διών και ΕΕ3) εάν οι τελικοί χρήστες αντιμετώπισαν δυσκολίες στην εφαρμογή
της προτεινόμενης ροής εργασίας.

xiv

(αʹ) Ένα στιγμιότυπο οθόνης του γηπέδου. (βʹ) Οι ποδοσφαιριστές. Το κείμενο που
αιωρείται πάνω από τον πράκτορα υποδει-
κνύει την τελευταία “σκέψη” του πράκτορα,
που είναι η επόμενη ενέργεια που θα εκτε-
λέσει. Σε αυτήν την εικόνα, η πρόταση
move(self, left, 0) αποτελεί μέρος του βέλ-
τιστου συνόλου απαντήσεων που παρά-
χθηκε από τον επιλυτή ASP, πράγμα που
σημαίνει ότι στο επόμενο χρονικό βήμα,
ο πράκτορας θα μετακινηθεί προς τα αρι-
στερά.

Σχήμα 4: Η υλοποίηση του παιχνιδιού ποδοσφαίρου.

Συμμετέχοντες
Συμμετείχαν συνολικά 8 συμμετέχοντες (2 γυναίκες και 6 άνδρες), οι οποίοι

ήταν όλοι φοιτητές του τμήματος Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπο-
λογιστών. Όλοι είχαν εμπειρία προγραμματισμού με διαδικαστικές γλώσσες, με
τρεις από αυτούς να έχουν εμπειρία με λογικές γλώσσες (είτε Prolog είτε Clingo).
Όλοι εκτός από δύο από τους συμμετέχοντες είχαν προηγούμενη εμπειρία στην
ανάπτυξη παιχνιδιών, στο πλαίσιο προσωπικών εργασιών. Οι συμμετέχοντες ενη-
μερώθηκαν ότι δε συλλέχθηκαν προσωπικά δεδομένα πέρα από τις απαντήσεις
τους στο μέρος συνέντευξης της μελέτης. Κάθε συμμετέχοντας συμμετείχε στη
διαδικασία της μελέτης για διάρκεια 0,5 έως 3 ωρών, με αποτέλεσμα μια συνολική
διάρκεια μελέτης περίπου είκοσι τεσσάρων ωρών.

Διαδικασία Μελέτης
Η διεξαγωγή της μελέτης ήταν σε μορφή ενός προς ένα, όπου κάθε συμμε-

τέχοντας εργαζόταν ατομικά με τον ερευνητή. Η μελέτη χρησιμοποίησε όλα τα
συλλεγμένα δεδομένα με ανώνυμο τρόπο και οι συμμετέχοντες είχαν την ελευ-
θερία να αποσυρθούν από τη μελέτη οποιαδήποτε στιγμή της επιλογής τους.

• Φάση Α - Εισαγωγή στο ASP. Η μελέτη ξεκίνησε με μια σύ-
ντομη επισκόπηση της τεχνολογίας του Προγραμματισμού Συνόλου Απα-
ντήσεων, της σύνταξης και σημασιολογίας της γλώσσας Clingo.

xv

• Φάση Β - Υλοποίηση Μηχανισμού Παιχνιδιού / Δημιουρ-
γία Περιεχομένου. Στη συνέχεια, ζητήθηκε από τους συμμετέχοντες
να σκεφτούν έναν μηχανισμό παιχνιδιού ή έναν δημιουργό περιεχομένου
που θα ήθελαν να υλοποιήσουν χρησιμοποιώντας το ASP. Ενθαρρύναμε
τους συμμετέχοντες να είναι δημιουργικοί και να σκεφτούν μοναδικές ή
δύσκολες ιδέες. Αφού οι συμμετέχοντες είχαν μια ιδέα στο μυαλό τους,
ο ερευνητής τους βοήθησε να δημιουργήσουν το λογικό πρόγραμμα για
τον μηχανισμό του παιχνιδιού τους χρησιμοποιώντας ASP. Αποφεύγαμε
να καθοδηγούμε τους συμμετέχοντες κατά τη διαδικασία μοντελοποίησης,
όπου θα κατάρτιζαν τους λογικούς κανόνες για το πρόγραμμά τους, και
περιορίζαμε την παρέμβασή μας στην επίλυση ζητημάτων που αφορούν τη
σύνταξη της γλώσσας Clingo. Κατά τη διάρκεια της διαδικασίας δημιουρ-
γίας, ο ερευνητής ήταν διαθέσιμος για να απαντήσει σε ερωτήσεις και να
παρέχει καθοδήγηση κατά τον απαιτούμενο βαθμό.

• Φάση Γ - Συζήτηση. Τέλος, διεξήγαμε μια ημι-δομημένη συνέντευξη
για να λάβουμε ποιοτικά σχόλια και να εξάγουμε την άποψη του συμμετέ-
χοντα σχετικά με την προτεινόμενη ροή εργασίας.

Η μελέτη παρείχε πολύτιμες πληροφορίες σχετικά με το πόσο καλά οι συμ-
μετέχοντες μπόρεσαν να κατανοήσουν και να εφαρμόσουν το ASP για τη δη-
μιουργία μηχανισμών παιχνιδιών, καθώς και για τα πλεονεκτήματα και τους πε-
ριορισμούς αυτής της προσέγγισης.

Ανάλυση Αποτελεσμάτων
ΕΕ1: Εφαρμοσιμότητα των προτεινόμενων ευρετικών
ASP σε περιπτώσεις ανάπτυξης παιχνιδιών

Δεδομένου του αριθμού των συμμετεχόντων, η αξιολόγησή μας βασίζεται
κυρίως σε μια ποιοτική παρά σε ποσοτική έρευνα. Οι συμμετέχοντες παρείχαν
συγκεκριμένα αποτελέσματα για τα πλεονεκτήματα και τα μειονεκτήματα της
προτεινόμενης ροής εργασίας. Επιπλέον, κατά τη διάρκεια της μελέτης, δημιουρ-
γήθηκε μια σειρά εφαρμογών. Ο μεγαλύτερος αριθμός των συμμετεχόντων επι-
κεντρώθηκε στη δημιουργία προγραμμάτων παραγωγής περιεχομένου παρά σε
μηχανισμούς συμπεριφοράς πράκτορα.

Οι συμμετέχοντες έδειξαν ικανότητα στην εφαρμογή των ευρετικών εφαρ-
μοσιμότητας του ASP κατά τη διάρκεια της μελέτης. Οι δημιουργίες τους απέδει-
ξαν την κατανόηση τουλάχιστον ενός από τα χαρακτηριστικά της συντομίας, του
σχετικά μικρού συνόλου λύσεων και της δυνατότητας αναδυόμενης πολυπλοκό-
τητας. Αυτές οι παρατηρήσεις επιβεβαιώνουν την πρακτικότητα και την αποτελε-
σματικότητα των ευρετικών στην καθοδήγηση των συμμετεχόντων προς επιτυχή
υλοποίηση και αξιοποίηση του ASP στη διαδικασία ανάπτυξης παιχνιδιών.

xvi

Εφαρμογή Περιγραφή Χαρακτηριστικό Σχεδιασμού Διάρκεια Επαναλήψεις
Προσομοιωτής Κατεύθυνσης Ανέμου Προσομοιώνει την κατεύθυνση του ανέμου σε ένα πλέγμα. Σ, Μ 2,5 ώρες 3
Δημιουργός Λαφυρού Δημιουργεί συνδυασμούς ανταμοιβής. Σ, Μ 1 ώρα 2
Συνομιλητικός Πράκτορας Προσομοιώνει μια συνομιλία. Μ, Μ 2 ώρες 4
Πράκτορας Διάσχισης Χώρου Πράκτορας που μπορεί να πλοηγηθεί σε έναν 2D χώρο. Σ 1 ώρα 2
Δημιουργός Επιπέδων Δημιουργεί επίπεδα παιχνιδιού. Σ, Μ 2 ώρες 5
Επιλυτής Ball Sort Λύνει/Δημιουργεί παραδείγματα παζλ παιχνιδιού. Σ, Μ 1 ώρα 2
Επιλυτής Futoshiki Λύνει/Δημιουργεί παραδείγματα παζλ παιχνιδιού. Σ, Μ 0,5 ώρες 2
Δημιουργός Επιπέδων Δημιουργεί επίπεδα με ελέγξιμη δυσκολία. Σ, Μ 3 ώρες 6

Πίνακας 1: Οι εφαρμογές που δημιουργήθηκαν από τους συμμετέχοντες κατά τη
διάρκεια της μελέτης και τα χαρακτηριστικά σχεδιασμού που ικανοποιούν για την
καταλληλότητα του ASP. Αυτά είναι η συντομία (Σ), η σχετικά μικρός χώρος
λύσεων (Μ), και η αναδυόμενη πολυπλοκότητα (Α). Στη διάρκεια μετράται ο
συνολικός χρόνος ανάπτυξης. Μια μεμονωμένη επανάληψη ορίζεται ως η διαδικα-
σία επιθεώρησης των παραγόμενων συνόλων απαντήσεων του προγράμματος και
την εκτέλεση ενός ή περισσότερων σημαντικών τροποποιήσεων στο πρόγραμμα.

ΕΕ2: Υποστηρίζει η προτεινόμενη μεθοδολογία ASP
τη δημιουργικότητα στον σχεδιασμό παιχνιδιών;
Ρωτήσαμε τους συμμετέχοντες εάν η προτεινόμενη ροή ερ-
γασίας παρέχει έμπνευση για τον σχεδιασμό παιχνιδιών. Ένας
συμμετέχοντας με εμπειρία στην ανάπτυξη παιχνιδιών ανέφερε ότι η ροή εργασίας
παρέχει τη δυνατότητα να δημιουργηθούν εντελώς νέοι μηχανισμοί παιχνιδιών
που αλλιώς θα παραμερίζονταν λόγω της δυσκολίας υλοποίησης τους.

Οι περισσότεροι συμμετέχοντες αναγνώρισαν ότι η κύρια αξία του ASP
είναι η ικανότητά του να αντιμετωπίζει προβλήματα με συνοπτικό τρόπο. Εξέ-
φρασαν την άποψη ότι ο ASP διευκολύνει τη συνοπτική επίλυση προβλημάτων
και απλοποιεί τη διαδικασία ανάπτυξης. Επιπλέον, ένας συμμετέχοντας ανέφερε
ειδικά ότι ο ASP προσφέρει πλεονεκτήματα για άπειρους προγραμματιστές, κα-
θώς διευκολύνει την έκφραση κανόνων ως λογικών περιορισμών από άτομα χωρίς
εκτεταμένη εμπειρία προγραμματισμού.

Οι περισσότεροι συμμετέχοντες, μετά την εισαγωγή στο παράδειγμα του
ASP, μπόρεσαν να αναγνωρίσουν ενστικτωδώς σενάρια όπου μπορεί να εφαρμο-
στεί. Από τις σχεδιαστικές ευρετικές που προτείναμε, αυτή που αναφέρθηκε ως
σχετικά μικρός χώρος λύσεων ήταν η πιο δύσκολη στην εφαρμογή και αυτή που
οι συμμετέχοντες αντιλήφθηκαν ως περιοριστική για τον σχεδιασμό τους.

Αν και μερικοί συμμετέχοντες ανέφεραν ότι υπάρχει μια απότομη καμπύλη
μάθησης, γενικά η μεθοδολογία ASP θεωρήθηκε ισχυρή και δημιουργική για τον
σχεδιασμό παιχνιδιών. Ένα ζευγάρι σχεδιαστή/προγραμματιστή (ή ένας μόνο
σχεδιαστής που μπορεί επίσης να προγραμματίζει με τη μεθοδολογία) μπορεί
να περάσει γρήγορα από την ιδέα σε ένα λειτουργικό πρωτότυπο, με ελάχιστο
χρόνο ανάμεσα στις επαναλήψεις.

-- Συμμετέχοντας 1: “Δίνει τη δυνατότητα να δημιουργήσεις εντελώς νέα
game mechanics που δεν έμπαινες στον κόπο να αναπτύξεις αλλιώς λόγω
της δυσκολίας του προγραμματισμού.”

xvii

-- Συμμετέχοντας 5: “[Ένας προγραμματιστής παιχνιδιών] μπορεί να πει κάτι
σαν "Α, αυτό μπορεί να κωδικοποιηθεί εύκολα χρησιμοποιώντας κανόνες".
Τώρα είναι πιο εύκολο να σκεφτώ ένα μηχανισμό παιχνιδιού και να φτιάξω
περιορισμούς για να τον υλοποιήσω.”

Κατά τη διάρκεια της μελέτης, οι συμμετέχοντες προσθέτανε επαναληπτικά
περιορισμούς. Αυτό οδήγησε σε μια διαδικασία τελειοποίησης όπου προσθέτανε
σταδιακά πιο περίπλοκοι κανόνες και περιορισμοί. Τα παραγόμενα αποτελέσματα
εξετάζονταν για να επιβεβαιωθεί η σωστή μοντελοποίηση και οι συμμετέχοντες
συχνά προσθέτανε νέους κανόνες και περιορισμούς όταν παρατηρούσαν ανεπι-
θύμητα μοτίβα ή συμπεριφορές στην έξοδο. Αυτό επιβεβαιώνει εμπειρικά την
εγκυρότητα του διαδικαστικού κύκλου στο fig. 1, όπου τα αποτελέσματα της
μοντελοποίησης του σχεδιαστή μπορούν να τροφοδοτήσουν τη δημιουργική του
διαδικασία.

ΕΕ3: Δυσκολίες στην προτεινόμενη εφαρμογή της
ροής εργασίας ASP
Ρωτήσαμε τους συμμετέχοντες ποιες δυσκολίες αντιμετώπισαν
κατά την εφαρμογή της προτεινόμενης ροής εργασίας. Μία κοινή
δυσκολία που αντιμετώπισαν οι συμμετέχοντες ήταν η ασυνήθιστη σύνταξη της
γλώσσας Clingo. Τη θεώρησαν παράξενη πράγμα που δυσκόλεψε τη συγγραφή
και ανάγνωση των προγραμμάτων. Επιπλέον, η έλλειψη ενός εργαλείου εντοπι-
σμού σφαλμάτων αποτέλεσε ένα σημαντικό εμπόδιο, ειδικά κατά τις αργότερες
επαναλήψεις, όταν τα προγράμματα έγιναν πιο περίπλοκα με πολλούς κανόνες
και περιορισμούς ακεραιότητας. Επίσης, αναγνωρίστηκαν η αργή επίλυση και οι
περιορισμένες δυνατότητες κλιμάκωσης ως περιορισμοί.

Καταλήξαμε σε ένα σαφές συμπέρασμα σχετικά με τη σημασία της επέν-
δυσης χρόνου στην ανάπτυξη μιας ολοκληρωμένης αντιστοίχισης μεταξύ των
συνόλων απαντήσεων που παράγονται από τον επίλυτη ASP και της αναπαρά-
στασής τους στο παιχνίδι. Έγινε εμφανές ότι η εξάρτηση αποκλειστικά από την
επιθεώρηση της ακατέργαστης εξόδου του επιλυτή είναι επιρρεπής σε σφάλματα
και μπορεί να οδηγήσει σε μια νοητικά απαιτητική εμπειρία για τους προγραμμα-
τιστές.

-- Συμμετέχοντας 7 : “Θα ήταν ωραίο να υπάρχει μια γραφική διεπαφή που να
εμφανίζει πώς ο επιλυτής φτάνει στις λύσεις.”

-- Συμμετέχοντας 8: “[Η ροή εργασίας] θα μπορούσε να βελτιωθεί αν η Clingo
είχε καλύτερη σύνταξη. Ίσως, μια αφαίρεση κατασκευασμένη από πάνω
της.”

xviii

Συμπεράσματα και Μελλοντική Εργασία
Ο στόχος της έρευνάς μας ήταν να εξερευνήσουμε τις ευρετικές εφαρμογής

του Προγραμματισμού Συνόλου Απαντήσεων στο πλαίσιο της ανάπτυξης παι-
χνιδιών. Επικεντρωθήκαμε στον εντοπισμό πιθανών περιπτώσεων όπου ο ASP
μπορεί να εφαρμοστεί αποτελεσματικά και διενεργήσαμε μια εμπειρική μελέτη
για να αξιολογήσουμε την πρακτική αποτελεσματικότητά του.

Η προτεινόμενη διαδικασία απορρέει από την ανάγκη για αξιόπιστες διεπαφές
υψηλού επιπέδου προγραμματισμού που μπορούν να βοηθήσουν στην ανάπτυξη
περίπλοκων εφαρμογών όπως τα παιχνίδια. Προτείναμε μια μεθοδολογία για την
αναγνώριση των μερών όπου η λογική του παιχνιδιού μπορεί να εκφραστεί με
κομψότητα χρησιμοποιώντας την αναπαράσταση βασισμένη σε ASP.

Ένα ερευνητικό έργο που μπορεί να ξεπεράσει την περιορισμένη αποδοχή
του ASP είναι η δημιουργία μιας γλώσσας που διατηρεί τη σημασιολογία της
γλώσσας ΑnsProlog ενώ παρέχει μια πιο φιλική προς τον προγραμματιστή σύ-
νταξη και δομή. Η μελλοντική εργασία θα πρέπει να περιλαμβάνει την εφαρμογή
του ASP σε μεγαλύτερα έργα ανάπτυξης παιχνιδιών, εξερευνώντας πώς η προ-
τεινόμενη ροή εργασίας μπορεί να ενσωματωθεί σε μακροχρόνια έργα ανάπτυξης
παιχνιδιών.

Περιορισμοί
Εδώ, αναφερόμαστε στους περιορισμούς της έρευνάς μας. Βεβαίως, ένας πε-

ριορισμός της μελέτης μας είναι ότι το προφίλ των συμμετεχόντων περιορίστηκε
σε φοιτητές αντί για έμπειρους προγραμματιστές παιχνιδιών. Επιπλέον, ο αριθ-
μός των συμμετεχόντων ήταν σχετικά μικρός, με αποτέλεσμα να βασιζόμαστε
σε ποιοτική ανάλυση για τα ευρήματα της έρευνας.

xix

Abstract
The gaming industry is continuously growing and evolving, with new

ways of creating games being developed. However, even with the availability
of powerful game engines, developers are still forced to spend time and effort
reimplementing common game features, such as basic AI, pathfinding, and
simple scene variations. This can make it difficult for developers to focus on
the game's core mechanics and content, especially if they are not experienced
programmers or are uninterested in the development of complex algorithms.
In addition, the implementation of such features is often closely coupled with
the game's logic and architecture, making code reuse difficult.

The work in this thesis suggests an approach to game development where
parts of the game logic are written in a declarative programming language.
We do not reject the use of imperative programming but rather suggest tools
that can be a part of and enhance the game development process. Specifically,
this research focuses on the application of Answer Set Programming (ASP),
a declarative programming paradigm, in video game development. The study
demonstrates how ASP can be used as part of the game development process,
by providing new ways of thinking about game mechanics, paving the way for
new game design possibilities.

We highlight the adaptability of ASP to a wide range of problems and
address the solver's ability to generate solutions in a reasonable amount of
time. In addition, auxiliary tools are presented that can enhance the ASP
programming experience.

A framework is illustrated that integrates an ASP solver into a game
engine. Inside it, the designer can specify the rules that govern a specific
game mechanic such as the placement of objects or the behavior of NPCs. The
framework then generates the corresponding solutions which are interpreted
by the game engine. The framework is designed to be modular, simple and
extensible.

Finally, some concrete applications of ASP in the context of games are
presented. We also assess the proposed workflow's practical feasibility and
effectiveness by conducting an empirical user study.

xxi

Acknowledgements
Finally reaching the end of this journey I feel the need to express my

gratitude to the people that helped me along the way.
First and foremost, I would like to extend my deepest appreciation to my

supervisor, Christos Fidas. His guidance and unwavering support throughout
this research journey have been invaluable. Your insightful feedback and con-
structive criticism have greatly shaped the direction of this work and helped
me refine my ideas. I am truly grateful for your mentorship, for believing in
my abilities.

I am also indebted to the members of my supervising committee, Pavlos
Peppas and Christos Sintoris. Thank you for your time, dedication, and for
providing valuable insights and recommendations during the thesis defense.

To all those who have supported me, directly or indirectly, I extend my
heartfelt gratitude. Your contributions, in various forms, have played an
integral part in making me the person I am. Thank you for being a part of
my life and for making this accomplishment possible. I would like to thank,
in random order Ioannis P, Konstantinos K, Orestis M, Ioannis T, Ioannis
K, Georgia M, Nikolas F, Angelos A, Markela B, Apostolos P, Eleftherios P,
Georgios M, Virginia A.

To my loving partner, Ioanna, thank you for your endless patience, un-
derstanding, and unwavering belief in me. Your constant support, encourage-
ment, and unwavering presence have been my pillar of strength during the
highs and lows of life. You are my best friend.

Lastly, I would like to express my deepest appreciation to my family. To
my parents, Nikos and Giota, thank you for instilling in me the values of hard
work, dedication, and perseverance. Your unconditional love, sacrifices, and
unwavering belief in my abilities have been a driving force behind my accom-
plishments. To my younger brother, Nikolas, I wish that you find happiness
and I will be by your side for any help and support you might need.

Evangelos Lamprou
Patras, June 2023

xxii

Contents

1 Introduction 1
1.1 Problem Description . 1
1.2 Goals and Objectives . 2
1.3 Contribution and Scope . 2
1.4 Structure of the Thesis . 3

2 Related Work 5
2.1 Automatic Object Placement/Level Generation 5
2.2 Agent AI . 6
2.3 Integrating ASP with Game Engines 8

3 Background 9
3.1 Answer Set Programming . 9

3.1.1 Syntax . 11
3.1.2 Semantics . 13
3.1.3 Grounding and Solving 15
3.1.4 Event Calculus . 18
3.1.5 Examples . 20

3.2 Explainable AI . 28
3.2.1 Explainability in ASP 29

3.3 Game Engines/Game Tools . 32
3.3.1 The Godot Engine . 32
3.3.2 Building a simple 3D game 38
3.3.3 Summary . 40

4 Methods 43
4.1 Integrating ASP into a Game Engine 44

4.1.1 Architecture . 44
4.1.2 Mapping the Game State to ASP 46
4.1.3 Discretization of the 3D Space 47
4.1.4 Object Relational Mapping (ORM) 47
4.1.5 ASP Development . 49

4.2 Design of ASP-Based Game Mechanics 50
4.2.1 ASP Applicability Heuristics 50

xxiii

4.2.2 Game Design . 51
4.3 Testing and Evaluation . 54

5 Case Studies 57
5.1 Football (Soccer) Game . 57

5.1.1 The playing field . 58
5.1.2 Football-playing agents 59

5.2 Level Generation . 61
5.2.1 Generic Object Placement 61
5.2.2 Tile Level Terrain Generation 63

5.3 Goal-Oriented Room Traversal 65
5.3.1 Actions and Events . 66
5.3.2 Agent Choice . 67
5.3.3 Locked Door Problem 67
5.3.4 Results . 67

5.4 Study Participant Projects . 68
5.4.1 Participant Feedback . 70

6 Conclusions 77
6.1 Summary . 77
6.2 Future Work . 78

Bibliography 79

A Axioms 89
A.1 Discrete Event Calculus . 89

B Code Listings 91

C Article 93
C.1 Abstract . 93
C.2 Introduction . 93
C.3 Background Theory on Answer Set Programming 95
C.4 Heuristics and Method for Applying ASP in the Game Devel-

opment Process . 97
C.5 Proof of Concept and Case Studies 99

C.5.1 Case study (a): Tile-Level Terrain Generation 99
C.5.2 Case study (b): Football (Soccer) Game 100

C.6 Empirical Study . 101
C.6.1 Research Questions . 101
C.6.2 Participants . 102
C.6.3 Study Procedure . 102

C.7 Analysis of Results . 103

C.7.1 RQ1: Applicability of suggested ASP Heuristics in Game
Development Scenarios 103

C.7.2 RQ2: Does the suggested ASP methodological approach
supports creativity in game design? 103

C.7.3 RQ3: Difficulties in the suggested ASP workflow appli-
cation . 105

C.8 Conclusions and Future Work 105

List of Figures 107

List of Tables 111

1. Introduction

The game industry is continuously growing and evolving. As with other in-
dustries, new ways of creating games are being developed. Game engines offer
a plethora of tools and features that can aid game designers in bringing their
ideas to life [1].

Answer Set Programming (ASP) [31] is a declarative programming paradigm
that has shown promise in solving complex reasoning problems in various fields
such as employee assignment [87], legal reasoning [5] and even automatic mu-
sic composition [9]. This thesis explores the application of ASP techniques
in video game development. We will show that using declarative tools can
significantly speed up development time and relieve game programmers from
the burden of understanding and implementing complex algorithms, leading
to flexible and reusable code while also enabling for a different approach to
game development.

1.1 Problem Description
In recent years, video game development has increasingly relied on the inte-
gration of artificial intelligence (AI) to create more immersive and engaging
experiences for players. These include believable agents, content generation
and player profiling [111]. However, even with the advancement of modern
tools, programmers are still tasked with reimplementing basic game function-
ality such as path finding, decision making and game level variation, in their
game engine of choice's native language. Oftentimes, these tasks serve as a
bottleneck in the development process as they take a significant amount of
time to implement, interrupting the creative process of game design. In addi-
tion, the final implementations of these features are often closely tied to the
game's logic and architecture, making code reuse a challenge. Even recently
developed tools that can generate code automatically [72,115], might generate
results that are incorrect and hard to debug. Furthermore, these tools are of-
ten hard to steer towards a desired result [10], while game developers require
a high degree of control when developing systems [97]. Nevertheless, even if
those models were able to produce perfect code, the problem of complexity
remains, as a large amount of code, even if generated by a machine, needs to
be maintained and possibly adapted if changes to the application's structure

1

2 Introduction

occur.

1.2 Goals and Objectives
In this work, we seek to highlight the adaptability of ASP to a wide range
of problems. We will show how simple ASP modules can be written and
integrated into any game, while exploring the paradigm's potential to create
new game mechanics1 suitable to exist as part of a game experience.

We will propose a methodology and heuristics for succesfully applying
ASP to game development. Our goal is to develop a framework for developing
game mechanics that serve as complementary elements to enhance the overall
gameplay experience. We emphasize the potential of ASP to create game
mechanics or simply replace the traditional implementation of mechanics with
ones running inside a symbolic AI engine.

1.3 Contribution and Scope
To accomplish this, we have developed a generic framework that integrates
an ASP solver into a game runtime. In our implementation, we integrate
the clingo [37] ASP solver into the Godot game engine [47]. Godot is an
open source production-ready engine capable of producing both 2D and 3D
games. Our solution also takes into consideration the slow speed of ASP
reasoning, making the system suitable for real-time applications by using an
architecture where game logic and ASP reasoning are run in parallel. We
propose a pragmatic approach for this incorporation, taking into account the
complexity of the final framework.

We develop a few demonstrations, showing how new game mechanics can
be added and modified in a tutorial fashion. The framework we propose offers
flexibility and extensibility, opening up possibilities for game designers and
developers to easily experiment with and implement novel gameplay features.
Our findings contribute to the advancement of game development practices,
providing insights into the efficient implementation of new game mechanics,
and offering practical examples that demonstrate the ease and effectiveness
of such enhancements in game design and gameplay experiences. We also
conduct an evaluation of the ASP paradigm with developers at various levels
of familiarity with the paradigm.

1By game mechanics we refer to the rules that govern the the logic of a game world entity. This can include
entities the player will interact with e.g. enemies, items, etc. as well as abstract entities that are used to control
the game's flow such as level generation systems.

Structure of the Thesis 3

1.4 Structure of the Thesis
In Chapter 2, there is a brief overview of various approaches to the problems
of automatic object placement and intelligent agents throughout the litera-
ture, highlighting the challenges that these problems pose and how declara-
tive programming is relevant to solving them. In addition, previous attempts
to integrate declarative programming and answer set programming into game
development are also presented. In Chapter 3, we present the background
knowledge required to understand the rest of the thesis. This includes a brief
overview of ASP and some of it's applications and extensions, as well as a de-
scription of the game engine architecture. In Chapter 4 we discuss the specifics
of our approach, some implementation details and the structure of the user
study. Some concrete examples as well as results from the user study are dis-
cussed in Chapter 5. Finally, in Chapter 6 we comment on our contributions
and propose directions for future research.

4 Introduction

2. Related Work

In this section, we give a brief overview of the research landscape of com-
mon game development related tasks while also explaining how answer set
programming fits in as a solution. In addition, we show certain attempts at
integrating answer set programming into a modern game development work-
flow.

2.1 Automatic Object Placement/Level Gen-
eration

In recent years, there have been many different approaches to solving the
problem of automatic object placement in virtual environments. Some of
these approaches include rule-based methods, optimization-based techniques,
physics-based approaches and machine learning-based algorithms. Answer Set
Programming (ASP) is a relatively new declarative programming paradigm
that has shown promise in solving combinatorial problems, including object
placement.

Rule-based methods have been a popular approach to solving the problem
of automatic object placement. In this approach, object placement is done
manually by the designer inside a modeling tool, with their actions being
limited by a set of rules [95]. The rules are a set of predefined constraints that
try to ensure that objects placed retain geometric and physical consistency.
Such rules can be things like “no two objects can overlap” and “objects should
remain at rest”. This kind of solution can help by limiting the designer's
degrees of freedom to a manageable subset, but the designer is still forced
to interact with each object individually. In addition, the system is not well
suited to handle constraints that are not geometric in nature such as “objects
should be placed in a visually appealing way”.

Combining rule-based methods with semantic information can help to
overcome some of these limitations. In [113], the authors present a powerful
system (CAPS) which offers a plethora of features to the designer. CAPS uses
geometric rules as well as a semantic database to first create a plausible scene
by automatically placing objects one at a time. A pseudo physics engine is
also employed (similar to [20]) to ensure that the objects placed are physically

5

http://www.dgp.toronto.edu/~kenxu/caps.html

6 Related Work

consistent. In addition, the user can further refine the scene by interacting
with the placed objects and getting recommendations. The final system can
speed up the creation of scenes, but it is not clear how the semantic database
is constructed or how it can be extended to handle more complex constraints
or richer object metadata.

The work in [91,101] showcases the use of text-based descriptions to gen-
erate 3D environments. Generating scenes from natural language can elimi-
nate the need for a designer to interact with the scene. However, the inherent
ambiguity of natural language makes it difficult for the result to be control-
lable, or at least to be steered in a particular direction. In addition, the tools
developed in these papers are not publicly available, making it difficult to
assess their performance.

Machine learning-based approaches have also been used to solve the prob-
lem of automatic object placement. In [88], the authors present a system that
can generate indoor scenes using a combination of convolutional neural net-
works wherein each step of the generation process, the system predicts the next
object to place, its position, and orientation. As with all machine learning-
based approaches, the system is only as good as the training data it is given.
Generating a wider variety of scenes would require a larger training set, which
can be difficult to obtain. The controllability of the generated scenes is also
limited since the user is not able to provide any additional information to the
system.

A machine learning approach that is not based on neural networks is
presented in [59] where the Wave Function Collapse algorithm is used to gen-
erate tile-based scenes. The final scene generated is locally similar to a given
training sample. Thus, there is a higher coloration between the final scene
and the given training sample, allowing a designer to more accurately predict
and control the final result.

The application of answer set programming to the problem of automatic
object placement is relatively new. In [4, 80, 99], answer set programming
is employed to generate game levels. It is shown that using ASP can offer a
great amount of controllability and expressiveness to the designer. In addition,
constraints such as “a maze that needs to be solvable” can be easily conveyed.
Performance, however, is a major issue, with most of the work in this area
focusing on generating small scenes or levels, with work being done to improve
performance by partitioning the generation process into multiple steps [19].

2.2 Agent AI
Creating high-quality agent AI, even for background characters has been a
great challenge for the video game development field. A review of the state
of the art in this field is presented in [32]. Established techniques include

Agent AI 7

behavior trees, finite state machines, and machine learning techniques such
as reinforcement learning. These solutions can be very powerful, with plugins
like [57, 66] (decision trees and finite state machines), enabling a designer
to quickly develop functioning AI agents often without requiring extensive
programming knowledge. However, in both of those cases, the developer needs
to have a thorough understanding of the possible states and possible decisions
an agent can make. If the agent's AI needs to be extended, the designer will
need to manually insert the new possible states and their transitions, resulting
in a heavy cognitive load.

Declarative programming has been employed in the past for the develop-
ment of intelligent agents for games. The General Game Playing Description
Language (GDL) [43] attempts to provide a common declarative language for
the description of games on top of which intelligent agents can be developed.
The Prolog programming language has also been used to develop bots for
real-time video games. In [56], the SWI Prolog interpreter is used to develop
bot agents for the game Counter-Strike. The Prolog runtime handles low-level
actions such as movement and shooting as well as high-level actions such as
motivation and goal planning. The use of code as data is also mentioned,
modeling the communication between multiple bot agents as sharing Prolog
predicates. The work however provides minimal details on the game state rep-
resentation and the actual implementation of the AI, making the separation
between high and low-level actions unclear.

A notable example that popularised the declarative idiom in the game
development community is the video game F.E.A.R. [82] where the developers
used an action planning system to control the behavior of the enemies in the
game. However, as is often the case with commercial games, the implementa-
tion details of the system are not publicly available, making it hard to critique
the quality of the design.

Answer set programming (ASP) has been used in the development of in-
telligent agents for games to achieve autonomous decision-making in dynamic
and uncertain environments. Previous research has focused on applying ASP
to games such as Sudoku and Connect-Four [33, 103, 114] where agents use
logical reasoning to make decisions and solve puzzles. These kinds of appli-
cations showcase how ASP can develop elegant and short solutions to game-
playing problems. However, the works are limited to turn-based games where
the game state is static and the agent often has full knowledge of it. ASP
has been used in the development of strategic game-playing agents that em-
ploy reasoning about the game state by combining smaller ASP modules. [86]
In [24], a more general architecture is presented where agents become a com-
bination of ASP modules, where the overall agent behavior is a combination
of facts and rule sets. This work further highlights the extensibility of encod-
ing agent logic inside a declarative environment. Applications are not limited
to strictly goal-oriented games, as there have been attempts to develop an

8 Related Work

Angry Birds agent that uses ASP [18] to reason about the game state with
external information based on a physics simulation. In the same work, there
is also the aspect of planning at a higher level, as the agent tackles the prob-
lem of finding the next best level to play and which levels to retry. These
developments highlight the potential of ASP in developing intelligent agents
for games, which can handle complex and dynamic environments.

Most of the works mentioned have applied ASP to the development of
2D games. There are not many examples of the application of ASP to 3D
environments. The work done in [4] where ASP is used to generate 3D levels
for the game Portal shows that the ASP solver can quickly reach large solving
times when the size of the rooms and the number of objects in the scene
increases. This is also the case when dealing with agents that must make
decisions inside 3D space such as movement. There exist solutions to this
issue of increasing complexity1. The rules and restrictions of the game can be
encoded in a few lines of clingo code, making it a powerful tool for reasoning,
especially when the solution space is kept relatively small.

2.3 Integrating ASP with Game Engines
An important aspect of the work presented in this thesis is the integration of
ASP with a game engine.

In [99] the authors present the Ludocore engine, which is a game develop-
ment environment that attempts to add a solely declarative interface to game
design. Event calculus [93] is used to represent and reason about the game
state. Bridging the gap between the declarative and procedural paradigms,
especially in the context of game design, is a very interesting problem.

The work in this thesis is most similar to [3], where the authors present
ThinkEngine, a system that integrates ASP with the Unity game engine. In
this work, the authors give a clear and well thought-out the architecture of
a system that will allow in-game agents to reason about long-term reasoning
goals as well as short-term actions. The result is that of enriching existing
game tools with declarative programming, rather than replacing them. In our
work, we follow a similar approach.

1We give solutions to the issue of large solution space in the context of specific use-cases in chapter 5.

3. Background

The only true wisdom is in knowing
you know nothing.

Socrates

In this chapter, we fist present the necessary background for understand-
ing the ASP paradigm. We show how ASP can be used to model problems
using some illustrative examples and present some auxiliary tools that can be
used to provide a better programming interface or to gain further insight into
the solutions found by the solver. In addition, we present the architecture
of a popular open source game engine as an example of a game development
environment. Finally, through a simple example, we show how ASP can fit
into a traditional game development workflow.

3.1 Answer Set Programming
Answer Set Programming (ASP) [31] is a declarative problem solving paradigm
with roots in logic programming and nonmonotonic reasoning. The work
of [42] first formalized the semantics of stable models and the ASP core lan-
guage. Programming using this paradigm is done in a family of languages
sometimes called AnsProlog [41].

The idea behind ASP is to model a problem as a set of rules and facts
and then use a solver to find it's solution(s). Solutions are represented by
stable models also known as answer sets. Rules, facts and constraints which
describe the problem are the elements of the program. The program is then
fed to a solver which will find one or more solutions.

In traditional (imperative) programming, getting from problem to solu-
tion involves the programmer understanding the given problem and producing
a program which when given an instance of the problem will produce output
which will then be interpreted as the solution (fig. 3.1).

In answer set programming, getting from problem statement to a set of
solutions involves the following steps (fig. 3.2) [36].

1. Modelling: A problem is modelled in ASP syntax.

9

10 Background

Problem

Program Output

Solution

Programming Interpreting

Running

Figure 3.1: The process from problem to solution using imperative program-
ming.

Problem

Program Grounder Solver Stable Models

Solution

Modelling Interpreting

Grounding

Solving

Figure 3.2: The Answer Set Programming process from problem to solution.

2. Grounding: A grounder (e.g. gringo) transforms the ASP program
into a set of ground rules and facts.

3. Solving: A solver (e.g. clasp) finds a solution to the problem by com-
puting the set of stable models (answer sets).

There have been a number of industrially applicable solvers developed for
ASP such as DLV [31]. In this thesis, we will be applying the ASP system
Clingo [37] which combines the gringo grounder with the clasp [53] solver into
a single application, while also providing a powerful Python (and Lua) API
for embedding the solver in other applications.

Using answer set programming, most of the development time is placed
in the “modelling” phase, where the programmer has to describe the problem
using a set of facts and rules. A discussion on methodology for this process
can be found in [11] and is presented later in this thesis.

Answer Set Programming 11

1 % Facts
2 name("John").
3 age("John", 99).
4

5 % Rule
6 old(X) :- name(X), age(X, Y), Y > 90.

$ clingo example.pl
Solving...
Answer: 1
old("John") age("John", 99) name("John")

Listing 1: A simple ASP program.

3.1.1 Syntax
Following is a brief introduction to Answer Set programming's syntax with
focus on the particularities of the Clingo1. Some syntax elements not relevant
to our work are omitted for brevity2.

Terms
Terms are the basic building blocks of ASP programs. They can be integers,
strings, constants, variables, or functions. Integers and strings are similar to
their counterparts in other programming languages. Constants are identifiers
which start with a lower case letter, while variables start with an upper case
letter.

A variable is a placeholder for a value which is not yet known. A variable
takes the same value if it appears multiple times in the same rule or fact.
A special type of variable is the anonymous variable which is represented by
the underscore character _. Anonymous variables are used to match a term
without binding it to a variable, effectively ignoring it.

Functions are used to represent complex terms. As an example, the term
at("John", time(12), P) is a function consisting of three arguments, the
string "John", the function time(12) and the variable P.

Normal Programs and Integrity Constraints
Terms can be atoms (named symbols, strings and numbers) or compounds
consisting of a symbol and a list of logical terms as arguments. These com-

1clingo system from version 4.0 onwards adheres to the ASP language standard. [107].
2Official documentation for Clingo can be found in [34].

12 Background

A ::= T. Atom
F ::= A. Fact
L ::= A. Literal

| not A.
R ::= A : − L1, . . . , Ln. Rule
C ::= : − L1, . . . , Ln. Integrity Constraint
S ::= l {L1; . . . ;Ln} u : −R Choice Atom
G ::= l opaggregate{L1 = w1; . . . ;Ln = wn} u Aggregate
O ::= opoptimize{L1 = w1; . . . ;Ln = wn} Optimization

Grammar 3.1: A normal program grammar.

pounds can be thought of as function-like entities, of the form f(t1, . . . , tn)→
{True, False}.

Rules constitute more complex logical sentences comprising of a head (the
left part of the rule) and a body (the right part of the rule). If the body part
of the rule can be derived, then the head part is also true. A comma between
literals is equivalent to an “and” and the reuse of a rule with different body
terms constitutes an “or”.

The not keyword designates “negation as failure”, where the literal not a
evaluates to true if the literal a cannot be derived.

Integrity constraints specify that certain conditions should never hold.
When we introduce choice atoms, this will allow us to “filter” the generated
answer sets to the ones that are valid in our modelling context.

Choice Atoms
The generative and decision-making capabilities of Answer Set Programming
are enabled by choice atoms (or choice rules). A choice atom entails that the
ASP solver is free to choose one of the literals Li to be true.

Aggregates
An aggregate has an lower bound l and an upper bound u, a multiset of
literals Li where each literal is assigned to a weight. If the weight is omitted,
it defaults to one (1). The aggregate function opaggregate is one of:

• #sum: The sum of the weights.

• #max: The maximum weight.

• #min: The minimum weight.

• #avg: The average of all the weights.

Answer Set Programming 13

1 person("John").
2 person("Bill").
3 person("Maria").
4

5 people(N) :- N = #count { X : person(X) }.

$ clingo aggregate-example.lp
Solving...
Answer: 1
person("John") person("Bill") person("Maria") people(3)

Listing 2: An ASP program with an aggregate, which counts the number of
people in the knowledge base. We use the count aggregate function.

• #count: The number of unique literals.

Optimization
Answer set programming allows for optimization across multiple answer sets.
Optimization can be used to find the answer set with the smallest or largest
value of a certain function, which is achieved using the #minimize or #maximize
directive respectively.

3.1.2 Semantics
Let P be an ASP program. The programs under consideration are sets of
rules of the form

a← l1, . . . , ln (3.1)
where a is an atom and l1, . . . , ln are literals as shown in 3.1 (i.e., atoms

or negated atoms). The Herbrand universe of a first-order language L is the
set of all ground terms of L. The set of all predicate atoms which can be
constructed by combining predicate names appearing in P, with elements of
the Herbrand universe of P, is called Herbrand base of P. A (Herbrand)
interpretation I is a subset of the Herbrand base of P for which all atoms in
P are true.

A rule is ground if it contains no variables. The ground program Pg of
P is the set of all ground rules obtained by replacing all variables each of the
rules in P by all combinations. of the Herbrand universe's constants. We can
think of the program P as a concise representation of Pg.

14 Background

1 person("John").
2 person("Bill").
3 person("Maria").
4

5 0 { invite(X) } 1 :- person(X).
6

7 invited(N) :- N = #count { X : invite(X) }.
8

9 #maximize { X : invited(X) }.

$ clingo invite.pl
Solving...
person("John") person("Bill") person("Maria")
invite("John") invite("Bill")
invite("Maria") invited(3)
Optimization: -3
OPTIMUM FOUND

Models : 4
Optimum : yes

Optimization : -3

Listing 3: An ASP program with an optimization directive, which finds the
answer set with the largest number of invited people. Obviously, the optimum
answer set is the one where everyone is invited.

Answer Set Programming 15

Let I be a Herbrand interpretation of P. For a variable-free predicate
atom a, I |= a iff a ∈ I. For a default negated literal a, I |= nota iff a ̸|= I,
and for a classically negated literal a, I |= ¬a iff ¬a ∈ I. For a choice atom
l {a1; . . . ; an} u, I |= l {a1; . . . ; an} u iff l ≤ |{ak : I |= ak and 0 ≤ k ≤ n}| ≤ u.

A rule of P is said to be satisfied by I if, I |= a whenever I |= l1, . . . , ln.
The rules for which I |= l1, . . . , ln constitute the reduct p⟩ with respect to I.3
The reduct p⟩ can be thought of as the essential parts of program P.

In essence, a logic program P is satisfied by an interpretation I iff, all
rules of P are satisfied by I.

An interpretation I that satisfies program P is called a model of P. A
model for which no proper subset is a model is called a minimal model of P.

Definition 1 (Answer Set). An interpretation I is an answer set or stable
model of P iff, I is a minimal model of the reduct PI .

Consider the program

p(1).

q(2).

q(x)← p(x).

(3.2)

Two valid models are {p(1), q(2), q(1)} and {p(1), p, (2), q(1), q(2)}. How-
ever, of the two models, only the first one is a stable model.

3.1.3 Grounding and Solving
The programmer can treat the solver as a black box [99], but it is useful
to understand the process of grounding and solving in order to be able to
debug and optimize the program. Clingo combines the grounding and solving
process into a single step but the programs gringo and clasp can be invoked
separately for us to see the intermediate representation of ground programs.
Newer versions of Clingo allow the programmer to control the solving and
grounding process via an embedded scripting language (Lua and Python) [40].

Here, we will present briefly what is involved in the grounding and solving
process. We show the intermediate ground representation of an answer set
program and provide an algorithm used for producing all of it's stable models.

Grounding
Grounding (or instantiation) in the context of answer set programming in-
volves converting a logic program into a propositional format by systemati-
cally replacing all variables by variable-free terms. [58] The resulting program
has no variables but has the same answer sets as the original program.

3The interested reader can find a more detailed presentation of the reduct algebraic structure in [13].

16 Background

The grounding problem's complexity can be considered as polynomial
(O(na), a > 1) when dealing with fixed non ground programs. However,
when variable programs are considered, the complexity becomes exponential
(O(2n)) [60]. Work is being done to improve or eliminate the grounding process
by means of lazy grounding [109].

Consider the following logic program

p(1).p(2).p(3).

q(3)← not r(3).

r(X)← p(X) ∧ not q(X).

(3.3)

The grounding process produces the following ground program

$ gringo -t program.pl

p(1).
p(2).
p(3).
r(1):-not q(1).
r(2):-not q(2).
r(3):-not q(3).
q(3):-not r(3).

The second rule of our logic program was replaced by three (3) rules,
each replacing variable X with a different possible value (1, 2, 3). Notice how
the predicate p(X) has been optimized out of the rule.

Solving
An answer set solver is a program takes the propositional program represen-
tation provided by the grounder and computes it's answer sets. The process
is similar in concept to feeding problems to a SAT solver, which produces
one or more truth assignments that satisfy the problem. There are many
different solvers [30, 39, 71] that support the AnsProlog syntax and can used
interchangeably, producing the same answer sets for the same ASP program.

An Answer Set Solver Algorithm We will now show a possible imple-
mentation for an answer set solver [21]. Our solver will take as input a logic
program and have as output all of it's answer sets, or the empty set if none
exist.

Our program will be a set of rules (r) of the form

a← p1 ∧ p2 ∧ . . . ∧ pn ∧ not n1 ∧ not n2 ∧ · · · ∧ not nn (3.4)

Answer Set Programming 17

Function ComputeAnswerSets(P)
Data: A logic program P
Result: P's Answer Sets or ∅
return Solve(P,∅,∅)

end
1

Function Solve(P, CS, CN)
if Expand(P,CS,CN) = false then

return ∅
end
⟨CS,CN⟩ ←− Expand(P, CS, CN)
Select an atom a /∈ CS ∪ CN
return Solve(P,CS ∪ {a}, CN) ∪ Solve(P,CS,CN ∪ {a})

end
2

Function Expand(P, CS, CN)
Data: A logic program P, a set of atoms CS, a set of atoms CN
repeat

change←− false
forall rule r in P do

if rpositive ⊆ CS and rnegative ⊆ CN then
add rhead to CS
change←− true

end
end
forall rule r in P do

if rpositive ∩ CS ̸= ∅ and rnegative ∩ CN ̸= ∅ then
add head(r) to CN
change←− true

end
end

until change is false;
if CS ∩ CN = ∅ then

return ⟨CS,CN⟩
else

return false
end

end
Algorithm 1: A basic answer set solving algorithm [21].

18 Background

We define rpositive to be the set of positive atoms in r, rnegative to be the
set of negative atoms in r and rhead to be atom a in the head of r.

In order to obtain all the answer sets using algorithm 1, the main func-
tion ComputeAnswerSets invokes the Solve function with an initially empty
answer set. Within the Solve call, the answer set is iteratively expanded by
deducing all possible atoms that can be inferred from the current atoms in the
answer set, and subsequently adding one new atom at a time. The process
continues until all answer sets have been computed.

Many of the concepts present in ASP solvers were first introduced in
the field of satisfiability testing [8]. Modern ASP solvers use more advanced
techniques. Most can be placed into three categories based on the algorithm or
mapping they use: depth first search (DPLL) such as Smodels [81], mapping
to SAT such as ASSAT and Cmodels [44, 71] and hybrid approaches such as
clasp [39] which use conflict driven algorithms inspired by SAT solvers. In the
context of conflict resolution, conflicts are examined and “noted”, and decisions
are made based on conflict scores. Genetic algorithms have also been proposed
for this purpose, while ant colony optimization has been demonstrated as a
core algorithm for small-scale answer set solving examples.

3.1.4 Event Calculus
Here, we will give a formal presentation of the event calculus formalism and
how it relates to our work. In following sections, when building logic programs
for incorporating into a game, we will not consider or point out rules relating
to events as axioms of event calculus but instead as obvious and intuitive
parts of the modelling process of a time-variant environment. Nevertheless, a
formal presentation can often help with the development of our intuition.

Event Calculus (EC) [65, 93] is a formal logical framework that is com-
monly used in artificial intelligence and knowledge representation to model
and reason about dynamic and temporal phenomena. It provides a way to
represent events, states, and actions, along with their relationships and de-
pendencies, using formal logic. It allows for the modeling of causality, time,
and change, and provides a powerful tool for capturing and reasoning about
the dynamics of events and their effects over time.

When developing agents inside game environments, the time domain is
often present, requiring us to take into account the sequence of events occur-
ring as well as the connections between action and result.

Ontology and Predicates of Event Calculus
Using these predicates, one can describe complex time-variant systems.

Answer Set Programming 19

Logical Machinery

What happens when.

What actions do.

What's true when.

Figure 3.3: How the Event Calculus functions [93].

Predicate Meaning
HoldsAt(b, t) Fluent b holds (is true) at time t
Initiates(e, b, t) Fluent b starts to hold after event e at time t
Terminates(e, b, t) Fluent b ceases to hold after event e at time t
Happens(e, t) Event a happens at time t
StartedIn(e, t1, t2) Event e is initiated between times in the interval [t1, t2]
StoppedIn(e, t1, t2) Event e is terminated between times in the interval [t1, t2]
Releases(a, b, t) Fluent b stops being subject to inertia after action a at time t.

Table 3.1: Some Event Calculus predicates.

The Frame Problem in Event Calculus
A challenging aspect of modelling temporal domains in logic languages is that
an action's non-effects also need to be represented. This is often referred to
as the Frame Problem, first discussed in [75].

Solutions include using predicate completion, where the non-effects of
actions and non-occurrence of events are made explicit by adding rules that
represent the completion of the Initiates, Terminates, and Happens predicates.

Another approach is one of circumscription [74, 93]. Circumscription in-
volves minimizing the extensions of certain named predicates in a formula.
The Event Calculus is split into different parts, which are circumscribed sep-
arately to minimize the extensions of the predicates. The circumscription of
a formula Φ yields a theory in which these predicates have the smallest ex-
tension allowable according to Φ. The circumscription of Φ minimising the
predicate ρ is written,

CIRC[Φ; ρ] ⇐⇒ Φ ∧ ¬∃q[Φ(q) ∧ q < ρ] (3.5)

20 Background

where Φ(q) is the formula Φ with all occurrences of ρ replaced by q.
Understanding the above formula, however is not necessary for our pur-

poses.4

The Event Calculus and Answer Set Programming
Putting the theory of event calculus inside an answer set programming en-
vironment can be done by using the reformulation of the Event Calculus in
Answer Set Programming by [69] in conjunction with the discrete Event Cal-
culus (DEC) axioms5 [79]. This can be thought of as including a “library” in
our ASP program, allowing us to now employ the event calculus predicates as
shown in table 3.1 to reason about dynamic event-based systems.

In addition, built on top of Clingo's theory capabilities [35], the tool
Telingo [17] can be used to model and reason about temporal domains using
a slightly different interface.

Telingo offers a slightly better interface when encoding temporal domains
because of it's understanding of effect axioms. Notice how there is no need
to include a time argument in any of the predicates. These are rules that
constitute the results of certain actions in our modelling phase. Nevertheless,
“obvious” non-action effects, such as how items that are not moved stay where
they were, still need to be explicitly authored.

3.1.5 Examples
Following are some motivating examples that showcase the use of ASP on
some concrete cases. Through these examples, it is not our goal to appreciate
the complexity of the given problems, but rather to prove how they can be
efficiently modelled and solved succinctly using ASP.

Graph Coloring
Example 3.1.1. Consider a graph G = (V,E) where V is the set of vertices
and E is the set of edges. The goal is to color the nodes of a graph such that no
two adjacent nodes have the same color. In the usual problem definition, we
need to color the nodes with at most N colors. This problem in NP-complete
for N ≥ 3 [83].

We try to solve a more general case of the problem, where we need to
find the minimum number of colors needed to color the graph, given the above
constraint.

4The interested reader can find more information on circumscription in [70] and a history of it's relevance to
the frame problem in [93].

5The axioms which are used in our examples are presented in appendix A.1.

Answer Set Programming 21

We will first define our specific problem instance, representing the graph
as a collection of facts of the form edge(v, v′), v, v′ ∈ V . We will represent
each vertex using a unique number n ∈ Z. However, this is just a modelling
choice and the vertices could have just as well been given unique alphanumeric
names, possibly representing entities.

3

1
6

2

5

4

Figure 3.4: An example graph instance with six (6) vertices and seventeen
(17) edges.

We encode the graph in fig. 3.4.

1 edge(1,2). edge(1,3). edge(1,4).
2 edge(2,5). edge(2,6). edge(2,4).
3 edge(3,1). edge(3,4). edge(3,5).
4 edge(4,1). edge(4,2).
5 edge(5,3). edge(5,4). edge(5,6).
6 edge(6,2). edge(6,3). edge(6,5).

Defining the colors can be done similarly to the vertices, with a number
c ∈ Z representing each different color. However, in the interest of semantic
clarity, we decide to encode the possible vertex colors with facts of the form
color(c), where c is the color's name.

1 color(red).
2 color(blue).
3 color(green).
4 color(yellow).
5 color(purple).
6 color(cyan).

We now proceed with encoding the problem using non-ground rules which
are independent of the specific problem instance. Notice how the generation

22 Background

1 % Generate
2 1 { node_color(N, C) : color(C) } 1 :- node(N).
3

4 % Test
5 :- edge(I, J), node_color(I, C), node_color(J, C).
6

7 % Optimize
8 #minimize { 1, C : node_color(_, C) }.
9

10 #show node_color/2.

$ clingo ncolor.lp
Solving...
Answer: 2
node_color(1,yellow) node_color(2,green) node_color(3,green)
node_color(4,blue) node_color(5,yellow) node_color(6,blue)
Optimization: 3
OPTIMUM FOUND

Models : 2
Optimum : yes

Optimization : 3

part of the encoding is separate from the part enforcing the integrity con-
straints (typically known as test part).

In seven (7) lines of code, we have managed to model and solve the
problem. We can see that the least amount of colors that can be used are
three (3).

Minimum Path Robot Traversal
Example 3.1.2. Consider a robot that can move in four directions: up, down,
left, and right. This robot is placed in a grid of size n × n. Let ggoal be the
goal position of the robot. We must find the shortest path from the robot's
starting position to the goal position taking into account possible obstacles in
the grid.

We first define the grid size and the facts the robot's starting position
and obstacle positions.

1 blocked(0,1).
2 blocked(1,1).

Answer Set Programming 23

3

1
6

2

5

4

Figure 3.5: The solution to our N-coloring problem instance based on the
optimum answer set.

R

Figure 3.6: Our robot's grid-world.

3 blocked(2,2).
4

5 grid(0..cols - 1, 0..rows - 1).
6

7 robot(0,0,0).
8

9 goal :- robot(1, 2, _).
10 :- not goal.

Representing the robot's position is done using predicates robot(x, y, t),
where x and y are the coordinates of the robot and t is the time step. Our
notation goes in line with the event calculus logical language [92]. Our robot
will be able to move at one of the specified directions in each time step. We
will use the following predicates to represent the robot's movement:

A shortcoming is how we need to specify a time range within which our
robot will act (using the predicate t(n), 0 ≤ n ≤ n). One has to choose a large
enough n such that a solution will always be found or if a solution were to be
found for larger n, it would not be of use. In this example we pick n to be

24 Background

1 % Actions
2 t(0..n).
3 direction(up;down;left;right).
4 0 { move(D, T): direction(D) } 1 :- t(T).
5

6 action(T) :- move(_, T).
7

8 % Events
9 robot(X, Y + 1, T + 1) :- robot(X, Y, T), move(up, T).

10 robot(X, Y - 1, T + 1) :- robot(X, Y, T), move(down, T).
11 robot(X - 1, Y, T + 1) :- robot(X, Y, T), move(left, T).
12 robot(X + 1, Y, T + 1) :- robot(X, Y, T), move(right, T).
13

14 robot(X, Y, T+1) :- robot(X, Y, T), not action(T), t(T).
15

16 % Integrity constraints
17 :- robot(X, Y, _), not grid(X, Y).
18 :- robot(X, Y, T), blocked(X, Y), T=0..n.

Listing 4: The ASP encoding of the robot traversal problem.

equal to the number of cells in the grid. We make the assumption that the
robot will reach it's goal in this time frame. Having an infinite time frame
would be convenient for the programmer's peace of mind, but it would equate
to an infinite time spent in the grounding phase.

An important part of the modelling phase for event-based problems (re-
lating to the frame problem [27, 49]) is the last rule of the successor states
(section 3.1.5, highlighted), which implies that if the robot does not move in
a time step, it will stay in the same position. An intuitive explanation is that
states that remain unchanged, should continue on to the next time-step.

With those rules in place, we have fully modelled the robot's world and
the actions it can take inside of it. All that remains is to make the robot take
the shortest path between the starting and final grid cell. Traditionally, a
developer (especially in a game development context) would employ a graph
search algorithm like A* [94]. However, in the context of ASP and Clingo, we
can simply add an optimization directive.

1 last_action(TLast) :- TLast = #max { T : action(T) }.
2 #minimize {T : last_action(T) }.

Answer Set Programming 25

$ clingo robot.pl
Solving...
Answer: 1
move(right,0) move(right,1) move(right,2) move(up,3)
move(up,4) move(up,5) move(left,6) move(left,7)
move(down,8)
Optimization: 8
OPTIMUM FOUND

Models : 1
Optimum : yes

Optimization : 8

Listing 5: The output of Clingo for the robot traversal problem (fig. 3.6).

R

R

Figure 3.7: The robot's optimal path.

Menu Order Planning
Example 3.1.3. Let n be the total number of items to choose from (menu
items), and let ci denote the cost of item i. Let C be our target cost. The goal
is to select a subset (S) of the items (with repetition) such that

∑
i∈S

ci = C.

This problem is similar to the Knapsack problem [63], but with the items
being repeatable and the total cost having to be exactly C.

First, we appose the facts relating to our specific problem instance. We
will provide the cost of each item as a fact of the form cost(i, ci).

1 item(mixed_fruit).
2 cost(mixed_fruit, 215).
3 % ...

Because of Clingo's lack of support for floating point numbers, we will

26 Background

Figure 3.8: A relevant xkcd comic to example 3.1.3 [112].

have the cost of each item in cents. Later, we will provide an alternative
implementation which will allow us to have each item's cost as a floating point
number, intercepting the grounding process by leveraging Clingo's Python
API.

Modelling the “selection” of items might be a bit counter-intuitive. We
will add a choice atom which will choose zero (0) or one (1) facts of the form
picked(ci, n). We need to specify the amount of item's picked of a certain kind
because we can't, for example, have two facts picked(ci), picked(ci), designat-
ing that we chose item ci two (2) times. These two facts would act as a single
one.

Finally, we add the rule which enforces that the total amount of appetizers
is equal to our goal amount.

1 #const goal = 1505.
2 n(1..10).
3

4 0 { picked(I, N) : n(N) } 1 :- item(I).
5

6 total_cost(I, C) :- cost(I, Ci), picked(I, N), C = N * Ci.
7 :- not #sum { C : total_cost(I, C), item(I) } == goal.
8

9 #show picked/2.

Answer Set Programming 27

$ clingo menu.pl
Solving...
Answer: 1
picked(mixed_fruit,7)
SATISFIABLE

Models : 1+

The solver, thus, recommends that we order seven (7) mixed fruit plates.
However, that is a rather uninteresting order. We can see from clingo's
output that there are more valid models (answer sets). In the interest making
an order with more variety, we can use an optimization directive to try and
maximize the amount of different menu items in our order, while still adhering
to the rest of the problem's constraints.

1 #maximize { 1,I : picked(I, _) }.

$ clingo menu.pl
Solving...
Answer: 1
picked(mixed_fruit,7)
Optimization: -1
Answer: 2
picked(mixed_fruit,1) picked(hot_wings,2) picked(sampler_plate,1)
Optimization: -3
OPTIMUM FOUND

Models : 2
Optimum : yes

Optimization : -3

This order is a little more interesting, with one (1) mixed fruit plate, two
(2) hot wings plates, and one (1) sampler plate.

Now, as promised, we will provide an alternative implementation which
will allow us to have each item's cost as a floating point number.

1 #script(python)
2 import clingo
3 import math
4

5 def money(m):
6 m = float(m.string)

28 Background

7 n = round(m * 100)
8 return clingo.Number(n)
9

10 #end.
11

12 cost(mixed_fruit, @money("2.15")).
13 % ...

Here, we define a function call money which takes a clingo symbol (the
money ammount) and returns a clingo number (the money ammount in
cents). Our function runs as part of the grounding phase, effectively replacing
in-place the string passed into it with the corresponding integer value. The
rest of the problem encoding remains the same.

In conclusion, the examples presented in this section showcase the versa-
tility and expressive power of Answer Set Programming (ASP) as a knowledge
representation and reasoning paradigm. From modeling complex planning
problems to solving puzzles and generating menu orders, ASP has demon-
strated its ability to capture a wide range of real-world scenarios and provide
efficient solutions. The ease of encoding domain-specific knowledge and the
availability of powerful ASP solvers make it a valuable tool for addressing chal-
lenging problems in various domains, including artificial intelligence, robotics,
constraint logic programming, and knowledge representation. The presented
examples highlight the potential of ASP as a powerful and flexible tool for
knowledge-based reasoning and decision-making, opening up new avenues for
research and application development. It is not hard to think of ways to apply
these examples in the context of a game. For instance, example 3.1.1 could
be relevant in terrain generation. The terrain could be split into nodes where
adjacent nodes need to be of a different biome. With ASP, we could derive
the least amount of biomes necessary in order to make adjacent terrain nodes
be of different type. In example 3.1.2, a game agent would be tasked with
traversing a maze in order to reach the player character and in example 3.1.3,
we could use ASP to generate restaurant orders for the player to prepare in a
cooking game.

3.2 Explainable AI
The field of Explainable AI (XAI) has gained significant attention in recent
years due to the increasing reliance on artificial intelligence (AI) systems in
various domains. [108], it has become imperative to understand and explain
their decision-making processes to ensure transparency, accountability, and
trustworthiness. XAI seeks to bridge the gap between the complex decision-
making capabilities of AI and the need for human understandable explana-

Explainable AI 29

l

kd

e

m

r

e

Figure 3.9: Derivation graph for the atom e in the program eq. (3.6).

tions, thereby enabling stakeholders to comprehend and trust the outcomes
of AI-powered systems.

Explainability does only offer the ability to see how an AI system got it's
results but also the ability to debug and improve it. Most research currently
being done in developing deep learning frameworks for various tasks mostly
involve trial and error [14] without clear correlation between specific choices
being made in model architectures and the final results.

In this section, we show that using AI techniques rooted in logic can
produce inherently explainable AI systems, that can also be useful in game
contexts. Consider a game character not only being able to make smart deci-
sions but also be capable of explaining how they reached a conclusion.

3.2.1 Explainability in ASP
Symbolic artificial intelligence has one major advantage over sub-symbolic
approaches because of it's explainability. The relations between facts and
conclusions made by a system running a symbolic engine are clearly defined.
Thus, results from reasoning can be traced back. However, ASP solvers like
Clingo does not provide6 human-readable traces of their reasoning procedures.

The tool xclingo7 [16] allows for justifications to be presented in relation
to the results given by the Clingo solver. This is done by adding trace
directives corresponding to the rules of our logic program. Giving a clear
explanation of how the system reached specific conclusions can help with
debugging the program as well as give the system's user some insight on it's
output. The tool's functionality is based on the work in [15], where the causal
graph structure is presented, a graph G whose vertices correspond to “rules
involved in a derivation of a given atom (or formula)” and edges represent a
partial ordering of application of rules that resulted in that derivation. The
logic program's true atoms are associated with their justifications.

6As of the writing of this thesis and to my knowledge.
7https://github.com/bramucas/xclingo2

https://github.com/bramucas/xclingo2

30 Background

1 % A course was unsuccesful if the student
2 % received a grades less than 5.
3 -coursesFinished(X) :- student(X), course(C),
4 grade(X, C, G), G < 5.
5 coursesFinished(X) :- student(X), not -coursesFinished(X).
6 -thesisFinished(X) :- student(X), not thesisFinished(X).
7

8 degree(X) :- student(X), coursesFinished(X), thesisFinished(X).
9

10 -degree(X) :- student(X), -coursesFinished(X).
11 -degree(X) :- student(X), -thesisFinished(X).
12

13 #show degree/1.
14

15 %!show_trace degree(X).
16 %!show_trace -degree(X).

Listing 6: ASP program deciding whether a degree should be awarded to a
student.

Consider the following logic program P that models a drunk driving sce-
nario [15].

l : punish← drive ∧ drunk

d : drive

m : punish← resist

r : resist

e : prison← punish

k : drunk

(3.6)

Consider an ASP program which models the qualifications a university
student will need to have in order to receive a degree. This example was
inspired from the work in [5] where ASP was applied for legal reasoning.
Explainability is especially important in contexts where AI system's decisions
can affect human lives.

We have derived that “nikolas” should be awarded a degree. However, we
can't tell without closely and meticulously inspecting the ASP program why
“evangelos” can not graduate.

With the help of xclingo, without any modifications to the rules of our
original program, we can get the reason for which a student might not be
eligible for a degree.

The auto-trace option makes sure to trace every rule in program. Al-
ternatively, the programmer could add trace directives on specific rules, also
supplying human-readable messages to accompany the logic trace. The out-

Explainable AI 31

1 course(databases). course(ai).
2

3 student(nikolas). student(evangelos).
4

5 grade(evangelos, databases, 9). grade(evangelos, ai, 3).
6 grade(nikolas, ai, 10). grade(nikolas, databases, 10).
7

8 thesisFinished(nikolas).
9 thesisFinished(evangelos).

$ clingo university.pl
Solving...

degree(nikolas)

SATISFIABLE

Listing 7: Our specific problem instance corresponding to program in listing 6.

$ xclingo university.pl --auto-trace all -n 0 0
Answer 1
*
|__-degree(evangelos)
| |__student(evangelos);student(evangelos)
| |__-coursesFinished(evangelos)
| | |__student(evangelos);student(evangelos)
| | |__course(ai)
| | |__grade(evangelos,ai,3)

*
|__degree(nikolas)
| |__student(nikolas);student(nikolas)
| |__coursesFinished(nikolas)
| | |__student(nikolas);student(nikolas)
| |__thesisFinished(nikolas)

Listing 8: Running our program with xclingo and the auto-trace option.

32 Background

put includes a tree-like structure which shows the predicates responsible for
specific conclusions for each of the rules. In our example, it becomes appar-
ent that one of students has not completed their responsibilities for the “ai”
course, receiving a grade 3 rather than the minimum of 5.

It's important to note that the xclingo system works only with classically
negated predicates, requiring us to include the rules that lead to a student
not getting a degree (−degree(X)). The system could be even friendlier for
the program author if it could derive that a student should not be awarded
a degree simply on the basis of negation as failure. For example, the rea-
son for someone without a finished thesis not getting a degree would be
not thesisF inished(X). It's possible that we could answer “why not” questions
without requiring the program author to add classical negation predicates by
doing a program transformation during grounding. This is a possible contin-
uation to the work in [16] but outside the scope of this thesis.

3.3 Game Engines/Game Tools
In this section we will present how, in general, a game development workflow
is realized in relation to the game development tools available. We present the
popular game engine Godot and comment on how answer set programming
can fit into it.

3.3.1 The Godot Engine
The Godot Engine [47] is a free and open source game engine. It is written
in C++ while supporting a number of scripting languages such as GDScript,
C#, and even Python, trough community developed modules. The engine is
cross-platform and supports a number of platforms such as Windows8, Linux9,
macOS10, Android11, iOS12, HTML513, and UWP (Universal Windows Plat-
form)14. The engine is designed to be extensible and flexible, while also being
more lightweight than similar engines such as Unity [48,106].

Godot's basic Concepts
In this section, we present the basic concepts of the Godot Engine. We will
only dwell on the technical details to the extent where they are valuable in

8https://www.microsoft.com/en-us/windows
9https://www.kernel.org/

10https://www.apple.com/macos
11https://www.android.com/
12https://www.apple.com/ios
13The HTML5 standard can found in https://www.w3.org/TR/2011/WD-html5-20110405/
14https://learn.microsoft.com/en-us/windows/uwp

https://www.microsoft.com/en-us/windows
https://www.kernel.org/
https://www.apple.com/macos
https://www.android.com/
https://www.apple.com/ios
https://www.w3.org/TR/2011/WD-html5-20110405/
https://learn.microsoft.com/en-us/windows/uwp

Game Engines/Game Tools 33

understanding our contributions.

Scenes In Godot, a game is composed of a number of scenes. A scene can
be anything from a character, a level or a menu. Scenes are composed of
nodes, which are the basic building blocks of a game inside the engine. Scenes
can be nested, allowing for the creation of complex objects. For example, a
character scene can be composed of the character's body and a weapon they
are holding, which itself can be a separate scene.

Nodes A scene is composed by one or more nodes. A node can be a sprite,
a mesh, a camera, a light, a collision shape. New nodes can be created by the
programmer or downloaded from the Godot Asset Library15.

Scene Tree The nodes of a scene are organized in a tree structure, called the
scene tree. Nodes of the tree can have children, which are represented visually
as branches of the tree. This parent-child relationship can be leveraged, for
example, to ensure a character's weapon is always in the character's hand.

Signals Communication between nodes can be achieved in a minimal code
manner by using signals. These are named events that can be emitted by
a node and received by another. The programmer can connect a signal to
a function, which will be called when the signal is emitted. For example, a
button node can emit a pressed signal when it is clicked, or a football goal
node can emit a goal signal when a ball enters it.

Scripts Nodes can be extended by scripts, which are pieces of code that
can be attached to a node and can be written in a number of languages, such
as GDScript, C# and Python. Godot has some predefined callback function
which are callback at specific moments in the game's runtime. For example,
the _process function is called every frame, while the _ready function is
called when the node is added to the scene tree. This is where logic such as
agent AI will be placed. Through this scripting API, we are allowed to invoke
calls to the operating system, thus allowing for the integration of external
tools such as an ASP solver.

Godot's Design Philosophy
The workflow provided by each different game engine is heavily intertwined
with it's structure. Some game engines are highly specialized, providing tools
for development of games in specific genres such as RPGs [26] and Interactive
Fiction [62]. Godot strives to be a general purpose game engine. In this

15https://godotengine.org/asset-library/asset

https://godotengine.org/asset-library/asset

34 Background

Character

Wizard Warrior

Figure 3.10: A character scene extended to a wizard and warrior scene.

section we will provide a brief overview of Godot's design philosophy, how it
affects the programming experience and comment on some of it's weaknesses.

Object-oriented design and composition It can't be argued that object-
oriented programming has dominated software engineering from the early to
mid 1990s [51]. Object orientation lends itself well to game development since
there is often a one-to-one mapping between the objects in the program's
memory with the objects inside the game world.

Godot allows the developer to compose and aggregate scenes. For exam-
ple, one might create a Sword scene and a Flaming Sword scene which itself
uses the Sword scene, adding flames as a particle component on it of it. Us-
ing this kind of design, if the developer decided to change the original Sword
scene (for example by swapping it's texture for another one), all other scenes
that use it will be updated as well. Godot also offers an inheritance mecha-
nism, which allows for scenes to be extended, adding on new functionality or
modifying their in-world appearance. With a rudimentary involvement with
object-oriented software, one can see the point of this approach, as the project
structure tries to match the game's design [46]. One shortcoming of this ap-
proach is that it is not always clear how a project should be structured. For
example, an inexperienced developer, or someone that has not worked with
or studied object oriented principles, might fail to detect inherent similarities
between objects. For example, given a wizard and a warrior scene, they might
resort to create two separate scenes, rather than a single Character scene that
is extended by both the Wizard and Warrior scenes. While this issue of user
experience is outside of the scope of this thesis, it is worth noting that even
tools that present themselves as non-developer friendly still require a basic
understanding of software engineering principles.

In Godot, most game development, aside from behavior and game logic
is done by navigating and interacting with Godot's menus. The programmer
does not need to write boilerplate code in order to define a new scene or inherit

Game Engines/Game Tools 35

Root
Player

Sprite
Sword

Sprite
Enemy

RigidBody
CollisionShape

Sprite

Figure 3.11: The tree structure the example scene is composed of.

from an existing one. In addition, Godot provides a number of built-in nodes
that can be used to create game objects. These nodes are organized in a tree
structure, where each node can have a number of children nodes. The set of
nodes a base node has as children can be thought of as it's “capabilities”. For
example, a Sprite node can be used to display a texture on the screen, while
a CollisionShape node can be used to define a collision shape for a RigidBody
node, which can make it's parent node react to collisions and gravity.

In fig. 3.11, we have a scene comprising of a player and an enemy. These
entities can be construed as abstract nodes that represent the respective char-
acters. The player node, for instance, consists of a sprite node that is respon-
sible for rendering the appearance of the player. The sword node, serves as
a plausible representation of a sword that the player might be wielding. The
positioning of the sword, as a child of the player node, is dependent on the
parent's position. The enemy node, has a rigid body node as a child, which
imparts physics properties such as mass and velocity. Additionally, a collision
shape node is required to be added as a child of the rigid body node to enable
the calculation of collisions.

Extensibility Godot is designed to be extensible. Developers have the abil-
ity to create their own plugins and modules, which can be used to extend the
engine's functionality. These can be used to add new nodes, new editor func-
tionality or even new scripting languages. In this thesis, we will be developing
a module which will allow for the integration of ASP with Godot.

36 Background

Godot's Architecture
In this section we will provide an overview of Godot's architecture. Godot
is a complex system consisting of many moving parts. As of the writing of
this thesis, the project spans almost three million16 lines of code. However,
ample documentation as well as quality design choices have made it possible
to reason about the engine's structure.

The architecture as seen in fig. 3.12 consists of four core distinct pieces:

• Drivers: This is the part of the engine responsible for providing wrap-
pers around common operating system functions like threading and pro-
cess creation, file input and output, audio and low-level communication
with the GPU.

• Servers: These are the engine's subsystems each corresponding to a
major part of the game's logic. Examples of such servers are the Physic-
sServer and the VisualServer, responsible for 3D Physics calculations
and screen drawing, respectively.

• Scene: This part of the engine is the one a developer will likely be
most familiar with. It involves the main engine abstractions such as Re-
sources, the SceneTree and Node. Each part of this subsystem interacts
directly with one or more servers. For example, a Node representing a
moving ball interacts both with the Physics server for it's movement cal-
culations as well as the VisualServer for getting drawn onto the screen.

Interacting with Shared Libraries
Shared libraries [29, 64], also known as dynamic link libraries or shared ob-
jects, are essential components in modern software development. They are
pre-compiled code modules that contain functions and resources that can
be reused by multiple programs simultaneously, promoting code reuse and
modularity. These libraries are loaded into memory at runtime and shared
among multiple processes, reducing memory footprint and promoting efficient
resource utilization. By separating commonly used code into shared libraries,
developers can improve development efficiency, simplify maintenance, and
enhance system performance. Additionally, shared libraries enable dynamic
linking, allowing programs to link with the library's functions at runtime,
enabling flexibility and the ability to update the library independently from
the programs that rely on it. Overall, shared libraries play a crucial role in
software development, providing a powerful mechanism for code reuse, mod-
ularity, and efficient resource management.

16Results were taken by running the cloc (github.com/AlDanial/cloc) utility on the project's main branch.

github.com/AlDanial/cloc

Game Engines/Game Tools 37

Figure 3.12: Godot's architecture diagram [45].

38 Background

Environment

PlayerBall Follows

TraversesTra
ver
ses

Figure 3.13: The game diagram.

In order for the Godot engine to interact with native shared libraries at
run-time it uses the GDNative [23] technology, which has now been replaced
by the equivalent API GDExtension [22]. It can be used to run native code
without having to compile it with the engine. This allows for programmers
to use languages not officially supported by the Godot engine to write game
logic inside of. Bindings exist for languages like Python17 and Rust18. Through
these extensions, one can take advantage of modules written in another pro-
gramming language for game object scripting inside the engine. We use this
technology later in order to interface with the Clingo solver from inside Godot
using Python.

3.3.2 Building a simple 3D game
In this section we will give a short tutorial on how a simple 3D game consisting
of a player character and moving ball that can follow them. This serves as both
as an introduction to the workflow that Godot offers as well as an opportunity
to to show how logic programming can fit into it.

The list of features that will need to be implemented are:

□ Create Player scene

□ Load player model and related assets
□ Make player a physics object
□ Program player control logic

□ Create Ball scene

□ Load ball model and related assets
□ Make ball a physics object

17https://github.com/touilleMan/godot-python
18https://github.com/godot-rust/gdnative

https://github.com/touilleMan/godot-python
https://github.com/godot-rust/gdnative

Game Engines/Game Tools 39

□ Program ball “player-following” logic

We begin by creating a new project in Godot. We then setup a Main scene
where our game entities will be placed inside of. Afterwards, we create a scene
with a KinematicBody representing the player character. For the player scene,
we also add a CollisionShape node as a child of the player node in order for
the player to collide with the environment as well as a MeshInstance node
to represent the player's model. We then implement a script for the player
character that enables it to respond to user input and move accordingly. This
is a simple mapping between keyboard input and the player character's change
in velocity. For this, we override the _physics_process method provided by
the engine to all nodes that interact with the physics engine. This method is
called at every step of the physics simulation. A Camera node is also added
as a child to the player scene which follow the player's movement. This is
used to render the scene from the player's perspective.

Next, we set up a scene with a RigidBody representing the ball and add
a CollisionShape and MeshInstance node similarly to the player scene. We
then develop a script for the ball that utilizes the Godot physics engine to
calculate the direction and speed of the ball towards the player, allowing it to
chase the player and bounce off of obstacles in the scene. This is done again by
overriding the _physics_processmethod of the ball node. The ball's velocity
normal vector can be calculated by subtracting the ball's position from the
player's position. This vector can then be scaled by a constant speed factor
to get the ball's velocity.

⃗vball = |p⃗player − p⃗ball| · speed (3.7)
Now, running the game will have a ball move towards the player around

the scene. We can imagine that this ball could be some sort of enemy or a
friendly pet that follows the player around.

This is a trivial problem and it would suffice to say that a game de-
veloper would not need to use logic programming to solve it. However, by
implementing the ball's movement using ASP we can still highlight some of
the paradigm's strengths.

The logic in listing 9 ends up being several times longer than the original
script. This can hardly be considered an improvement. However, in the orig-
inal program, the game developer had to understand the concept of vectors
and how the difference between two position vectors can be used to calculate
a direction vector. These of course are concepts any competent game devel-
oper should be familiar with. Nonetheless, when we deal with other game
mechanics and scenarios, the list of required background knowledge required
to implement the game logic begins to grow. In the ASP program, we don't
ask the agent to move in any particular direction. Rather, after encoding
the concepts of distance and movement, we allow the logic engine to figure

40 Background

out how the agent should move. This simple example hopefully illustrates
the motivation for considering ASP as a tool to ease the game development
process.

3.3.3 Summary
In this chapter, we have introduced the concept of logic programming and
the ASP paradigm in particular. We also presented a game engine and the
process for game creation it provides. Finally, we discussed the motivation
for using ASP in game development and how it can be used to solve a simple
game development problem.

Game Engines/Game Tools 41

1 #const t_end = 5.
2 t(0..t_end).
3 direction(up;down;left;right;front;back).
4

5 object(target).
6 object(self).
7

8 % For every time step, the ball can move in any direction
9 0 { move(self, D, T) : direction(D) } 1 :- t(T).

10

11 position(O, vec3(X, Y - 1, Z), T + 1) :- object(O),
12 position(O, vec3(X, Y, Z), T), move(O, up, T).
13 % ... movement rules for the other directions
14

15 % The ball stays in place if no movement is specified
16 position(O, vec3(X, Y, Z), T + 1) :-
17 position(O, vec3(X, Y, Z), T),
18 not move(O, _, T), t(T).
19

20 distance(D, T, O1, O2) :- position(O1, vec3(X1, Y1, Z1), T),
21 position(O2, vec3(X2, Y2, Z2), T),
22 D = |X1 - X2| + |Y1 - Y2| + |Z1 - Z2|.
23

24 % The ball tries to minimize the distance to the target
25 #minimize { D : distance(D, t_end, self, target) }.

Listing 9: The logic program responsible for the ball's movement written in
Clingo. The programmer only needs to convey the relevant aspects of the
game such as the agent's possible moves and how their distance to the target.
Finally, a single #minimize directive results in answer sets that make the
agent approach their target.

42 Background

4. Methods

My methodology is not knowing
what I'm doing and making that
work for me.

Stone Gossard

This chapter serves as a comprehensive guide to the methodology em-
ployed for the integration of Answer Set Programming (ASP) into the domain
of game development. The subsequent sections will delve into the various
facets of this methodology, elucidating the steps taken to effectively apply
ASP techniques within the context of game creation.

First, we will provide an in-depth overview of the software framework
developed specifically for embedding an ASP solver into a game engine (sec-
tion 4.1). Our design aims to be applicable to any game engine, given some
specific technical assumptions. This framework, acts as the backbone for
an easy-to-use integration of ASP principles into the game development pro-
cess. In addition, we will outline a programming methodology tailored for
the implementation of various game features using ASP (section 4.1.5). This
methodology provides a systematic and structured approach to applying ASP
techniques in a game development context. By following this methodology,
game developers can quickly leverage the paradigm to start creating game
mechanics and features. Furthermore, we propose applicability heuristics de-
vised as part of this methodology (section 4.2.1). These heuristics serve as
guidelines for determining whether a specific aspect of a game can be ef-
fectively implemented using ASP. By presenting these heuristics, we enable
game developers to make informed decisions regarding the suitability of ASP
in addressing particular challenges or requirements within their game design.
This systematic approach ensures that the incorporation of ASP into game
development is done judiciously, maximizing its potential benefits while mini-
mizing potential limitations. Finally, we present the format of the user study
we conducted (section 4.3), for evaluating the effectiveness and practicality of
the proposed framework and methodology. Results of this study are discussed
in section 5.4.

43

44 Methods

4.1 Integrating ASP into a Game Engine

Game World

ASP Solver ASP Program

Game Integration

Input
Logic

Atom
s Rules/Constraints

Answer Sets

Agent Behavior/Artifcats

Figure 4.1: Integration of an ASP solver into a game engine. The Game
World consists of the current game state and the information of all the game
objects inside of it. Input logic atoms are the facts that are used to describe the
current state of the game world. These, together with the rules and constraints
of the ASP program, are fed into the ASP solver, which then outputs answer
sets. These describe logic such as the actions that an agent should take or
where an object should be placed. Through the Game Integration component,
these answer sets are then used to update the game world.

4.1.1 Architecture
Here, we will present a generic design for integrating ASP into a game engine.
The design is based on the following assumptions:

1. The game engine provides an API for creating sub processes and cap-
turing their output or allows for the execution of programs in one the
solver's supported languages (in clingo's case Lua or Python).

2. The game engine provides an API for multi-threading.

Our architecture consists of the following parts:

• Game World: This represents the present game state. That includes
all the data associated with objects inside the game world.

Integrating ASP into a Game Engine 45

Game World

Actuators Sensors

Game Object Script

Game Engine Runtime

Knowledge BaseASP Solver

Thread

Figure 4.2: The generic framework's architecture.

• Node Script: This is the interface between the game programmer and
Game World. Most engines provide callbacks that run per frame or per
physics update which can be used to run supplementary logic inside.
The node script code will invoke the think procedure periodically (for
example every few milliseconds).

– Sensors: This is the module responsible for converting the game
state into ASP facts.

– Actuators: This is the module responsible for converting facts
returned from the ASP solver back into actions.

• Knowledge Base: This is the list of facts that the solver has access
to. This knowledge base can include both long-term memory (facts that
remain true throughout the game's runtime) and short-term memory
(facts that will be true until the next think step).

• Asynchronous Data Transfer: To address situations where the game

46 Methods

engine's update times exceed the solver's solving times, it becomes neces-
sary to implement a method for storing the output of the solver, allowing
for game entities to “think” in parallel with their other procedures. For
this, a data structure like a queue can be used [3].

This final design covers the vast majority of use cases where the ASP
solver will be integrated in the game runtime. Further augmentation of this
architecture might include the inclusion of two separate queues in order to
accommodate for reactive parts of the AI code, where solving times are short
and planning parts of the AI code where solving times can become large.
We suggest that the game developer does not avert highly from the proposed
design, since multiple levels of reasoning are better implemented using multi-
ple instances of game object scripts, each corresponding to a different solver
instance, helping with code modularity and separation of concerns.

In our work, we wanted to take advantage of a number of libraries that
allow for a better programming interface with clingo, such as clorm. These
libraries are only available1 as modules for the Python programming language.
This led to the need of integrating the Python language's runtime into the
Godot engine for some of our demos.

4.1.2 Mapping the Game State to ASP
In this section we will describe how the game state can be mapped directly
into answer set programming facts and rules. First, we will describe some
common game data structures and how they can be mapped to ASP.

Data Structures
Integers and Strings: Integers and strings are supported by default
by the clingo runtime. Floating point operations are not natively sup-
ported but can be encoded using clingo's Python API.

Vectors: Inside a game engine, vectors are often used to represent
positions, velocities, forces, etc. To represent a vector in ASP, we
have a predicate of the form vec3(X,Y, Z). Lower and higher dimen-
sion vectors can be similarly represented using predicates of the form
vecn(D1, D2, . . . , Dn).

Axis-Aligned Bounding Boxes (AABBs): A 3D axis-aligned bound-
ing box can be represented in ASP as two vec3 predicates. An example
of such a predicate would be aabb(vec3(x1, y1, z1), vec3(x2, y2, z2)). An
alternative modelling approach (which we used in section 5.2), is to first

1As of the writing of this thesis.

Integrating ASP into a Game Engine 47

compute the AABB's size from inside the game engine and have as sep-
arate predicates the AABB's size as well as its position. These two
options are semantically equivalent, but some program authors might
prefer one over the other

Matrices: Matrices are often used to represent transformations (rota-
tion, scaling, etc.) Matrices can be represented similar to vectors, by
predicates of the form matrixr×c(a, b, . . .).

Events
Events occurring or planned to occur inside the game world can be modelled
by using predicates of the form event(o, t) where o is the object that initiated
the event and t the time instance where the event happened relative to a
selected initial state. The initial state can either be the game start or more
practically, the last thinking step, where the ASP solver was last called. It is
often easier to reason about an agent's plan by simply using the current state
as the temporal starting point, rather the game run-time's initial position.

4.1.3 Discretization of the 3D Space
This restriction over the solution space can be beneficial from the gameplay
perspective. That kind of discrepancy between the actual game world and
the discretized world inside the logic engine makes the agent prone to making
small mistakes which can make the playing experience more fun for the player.
This side of AI-design is sometimes referred to as Artificial Stupidity [25, 96,
105,110].

However, since the actual game world is continuous or at least has a
space delta that is much smaller than the one we deal with inside our logic
programs, we can bridge that gap by applying a physics simulation to the
agent's movement, making their traversal inside the game world seem natural
and similar to an agent that is capable of moving in the full range of directions.

4.1.4 Object Relational Mapping (ORM)
Often times, the format in which a program's data is stored and retrieved
does not match well with how a programmer would like to represent and
deal with them. For example, in an application where users are stored in a
database, a user can either be represented as a row inside a database table or
an object with attributes and methods associated with it. This inconsistency
is often referred to as the object-relational Impedance Mismatch Problem
(IMP) [73]. Result of this is hard to extend and maintain code as their needs
to be “translation” between the two forms [54,104].

48 Methods

Database Object Relational Mapping Objects

Figure 4.3: ORM as a bridge between a database and objects.

1 class Person(clorm.Predicate):
2 name = clorm.ConstantField()
3 age = clorm.IntegerField()
4

5 facts = [
6 Person("Bob", 25),
7 Person("Alice", 65)
8]
9

10 problem_instance = clorm.FactBase(facts)
11 control.add_facts(problem_instance)

Listing 10: Encoding clingo predicates as Python objects and adding facts
relating to our problem instance to the solver using the API provided by the
clorm library.

Object relational mapping (ORM) is a method for converting data be-
tween a relational database and memory of a programming language, often
providing an object-oriented interface.

The clorm Python library.
A popular Python library providing an ORM interface to clingo is available.
The clorm [85] module allows for the mapping of facts to objects as well as
querying the fact database using an interface similar to other Python ORM
libraries [7].

The class-table matching is done by defining the schema. In the case of
answer set programming, we define the form in which the ASP predicates ap-
pear inside our program. For example, a predicate of the form person(name,
age), can be encoded with clorm as follows:

It's important to note that when defining this mapping, we need to re-
spect the order in which arguments appear inside the predicate (in our case,
name is first and age second). However, when querying from the solution
that clingo produces, order of arguments is irrelevant since we refer to each
argument by its name (in our example name and age). Now, adding facts to
the fact base can be done in a more programmer-friendly and readable way.

Integrating ASP into a Game Engine 49

1 if symbol.name == "young_person":
2 name = str(symbol.arguments[0])
3 age = str(symbol.arguments[1])
4 print(name, age)

(a) Using the clingo Python API.

1 for p in solution.query(Young_Person).all():
2 print(p.name, p.age)

(b) Using the API provided by the clorm library (after specifying
the schema).

Figure 4.4: Comparison of the clorm library usage when querying the fact
database for solutions compared to clingo's default Python API.

Using this interface, the game developer can add new facts to the clingo
fact database as well as interact with the solutions provided by the solver in
more human-readable and less error-prone manner.

As can be seen in fig. 4.4, the clorm library provides a convenient interface
for interacting with the fact database. Each fact argument can be associated
with a name and a type, rather than the index where the argument appears in
the atom. This allows for the use of a more natural syntax when querying the
fact database and avoids breaking the code when the order of the arguments
is changed in the ASP program.

It is important to note that object relational mapping is not a requirement
for using ASP in game development, rather a tool for improving the interface
imposed to the programmer.

4.1.5 ASP Development
We propose a standardized development methodology in order to guide aspir-
ing developers to successfully apply ASP to their applications by providing
some general programming guidelines relating to ASP modelling (fig. 4.1).

1. Determine Input and Output Atoms: The set of input atoms pro-
vide the context required for the ASP program to give correct results.
These are usually dynamic aspects of the game's runtime and change
at each invocation of the ASP solver. Examples of this are the starting
location of an agent inside a game world or the list objects that need
to be placed. On the other hand, output atoms encode the results pro-
duced by the solver and which will be interpreted by the game runtime

50 Methods

as artifacts or agent behavior. These include things like the direction at
which an agent will move in the next timestep or the location an object
should be placed at.

2. Generate “Random” Answer Sets: Based on the desired output
atoms, the programmer can quickly create an ASP program that is a
collection of choice rules that generates semi-random results. The arti-
facts or behavior produced this way will be incorrect or unsuitable but
will provide an easy way to debug possible technical issues. This is the
phase of development where some kind of visualizer or integration of the
solver with the game runtime is created.

3. Add Integrity Constraints/Optimization Directives: Based on
the current problem's domain, it is necessary to add integrity constraints
and/or optimization directives. Constraints provide direct control over
the produced answer sets for them to comply both with game's ruleset
and the designer's ideas. Among them the designer can pick the most
optimal ones based on some variable using optimization rules.

4.2 Design of ASP-Based Game Mechanics
In this section, we propose a methodology for applying ASP to game devel-
opment and provide a set of guidelines for detecting game mechanics where
the paradigm can be applied successfully.

4.2.1 ASP Applicability Heuristics
One important aspect of our work is the clarification of how specific game
mechanics can pair well with ASP. These applicability heuristics stem from
studying the related literature and analyzing the ways in which ASP has been
used in game development so far. We have chosen to implement specific demos
which possess the following characteristics:

• Brevity: Highlight the ways in which complex logic can be encoded
briefly in an ASP program. ASP (and declarative programming in gen-
eral) can reduce software complexity, [100] as well as the final program's
size Even when the problem domain increases in sophistication, the code
length and programming effort are not required to follow, making pro-
grams written in the paradigm more concise [12].

• Relatively Small Solution Space: Avoid scenarios where solving
times become very large. Because of the real-time nature of most games,
results from an ASP solver need to be produced in a time scale based

Design of ASP-Based Game Mechanics 51

either to the frame rate of the game's runtime or the desired frequency
for new agent decisions inside the game world.

• Emergent Complexity: Create scenarios where interesting behavior
emerges when agents are observed interacting with each other and the
environment inside the game world.

Symmetrically, there exist a few characteristics which render a game me-
chanic unsuitable for ASP:

• Complicated Logic: Avoid cases where the logic required to imple-
ment the game mechanic is very complicated and many different edge
cases of the problem have to be modelled explicitly.

• Large Solution Space: Avoid scenarios where solving times become
very large because of the many possible choices that the solver needs to
explore.

• Information Hunger: Avoid scenarios where the agents need to have
access to a large amount of information in order to make decisions.
Having agents make decisions based on a large amount of information
can be computationally expensive while also making the implementation
of the game mechanic more complicated and error-prone. Nevertheless,
complex reasoning tasks which require access to a large knowledge base
are better implemented as high level reasoning tasks that can run in the
background.

4.2.2 Game Design
ASP can lend itself to exploratory game design, where the designer can easily
make adjustments to the artifacts they are producing to test new ideas and
see immediate results [98].

The types of game mechanics where ASP can be interleaved in the de-
velopment process can be split into three general categories [3, 98].

• Planning AI: Where an agent makes plans about a complex action
that might involve complex reasoning.

• Reactive AI: Where an agent takes immediate action based on infor-
mation about his state and surroundings.

• Generative AI: Where the designer tries to create static or dynamic
artifacts and place them inside the game world. Generation might also
involve meta-generation of artifacts such as game rules [61].

52 Methods

Game Design

Video Game Specification

Video Game Architecture

Software Design and Implementation

Content Creation

Game Prototype Final Game

ASP

ASP

ASP

Formative Evaluation

Formative Evaluati
on

Figure 4.5: The various stages of game development encompass several points
where the application of Answer Set Programming (ASP) can prove advan-
tageous. The proposed framework facilitates the utilization of ASP in im-
plementing game mechanics, presenting an interface that separates logic into
distinct modules known as ASP Programs. This segregation contributes to
improved software design and streamlines the implementation of game me-
chanics. ASP can be leveraged for the generation of game content. By speci-
fying the desired content to the ASP program, designers can produce content
automatically. This approach enhances the development process by enabling
faster and easier iteration for both programmers and designers. This itera-
tive workflow fosters greater possibilities for experimentation and exploration
within the game's design space. As a result, the actual game design process
is impacted positively, leading to a more dynamic approach to game develop-
ment.

Design of ASP-Based Game Mechanics 53

Design

Program Answer Sets

Artifacts

Model

Solve

Integration

Inspire

Figure 4.6: Modelling a game mechanic with the help of ASP tooling. The
designer starts with an initial goal, the design of the wanted game mechan-
ic/behavior/set of artifacts which leads to a specification in the form of an
ASP program. The program's solutions can help to further refine the ini-
tial design as missing or unwanted aspects of it become apparent after it's
integration with the rest of the game occurs.

The designer is free to add as much or as little complexity to their mod-
elling. However, it is often more appropriate to model the core aspects of the
world the end artifact will interact with. Often times, because of performance
concerns, the designer will have to make some adjustments to their modelling
in order to remove certain variables that might only act as noise to the solver,
artificially enlarging the solving space without offering tangible improvement
to the artifacts created. These kinds of limitations might seem destructive
for the creative process but can often lead to more concrete and refined game
scenarios, while also allowing the designer to approach the mechanics in a
new eye, giving way to new ideas. In any case, changes to an ASP program
are much easier to make because of the brevity of the language as well as its
functional nature, making the code produced more modular and decoupled
from the rest of the program [52]. A modification being a few lines of ASP
away in comparison to a few hundred lines of code can make the difference
between a designer being able to explore a new idea or not.

The designer starts from a hazy state, where they have a general idea
of what they want to achieve. This process of free-thinking is interrupted
by the need to model the program which when run, will result in a set of
valid artifacts2 close to the desired one. It is of major importance to keep the
modelling process short and concise, where each subsequent iteration has a
tangible effect on the artifact produced [98]. The final artifact will then result

2In this context, an artifact can be anything from a game object to an agent's behavior.

54 Methods

into changes in the design space, as the creator will have a better under-
standing of whether their initial idea is suitable, or rather making modelling
improvements. It is possible that programmer has introduced possible bugs
in the ASP program, by either forgetting edge cases or misinterpreting the
desired behavior [3]. Incremental development is a good way to avoid this, as
the designer can gradually add complexity to their model, while also testing
the correctness of the program [11].

4.3 Testing and Evaluation
In this section we describe how we conducted a user study in order to evaluate
the effectiveness of using Answer Set Programming (ASP) to create game
mechanics or content generation procedures. In this study, participants were
recruited to design game mechanics or content generation tools and implement
them using ASP. Their outputs were analyzed to assess the feasibility and
usefulness of this approach. The study aimed to answer the research question
of whether ASP is a suitable tool for such tasks and whether it can provide
advantages over traditional methods. The findings of the study contribute to
the understanding of the potential of ASP as a tool for game development
and provide insights into its strengths, limitations and also inform future
refinements.

We recruited a total of 8 participants (2 female and 6 male), all of whom
were undergraduate Electrical and Computer Engineering students. All of
them had experience programming with imperative languages, with 3 having
experience with logical languages (either Prolog or Clingo). All but two of
the participants had prior experience with game development, in the context
of personal projects. Participants were informed that no personal data was
collected aside from their answers to the interview part of the study. On
average, each of the participants took part in the study procedure for a du-
ration of 0.5 to 3 hours, resulting in a total study length of approximately
twenty-four hours. The study conducted was a one-on-one user study, where
each participant worked individually with the researcher. The study utilized
all collected data in an anonymous manner, and participants had the freedom
to withdraw from the study at any time of their choosing.

• Phase A - Introduction to ASP The study began with a brief
overview of Answer Set Programming (ASP) technology and the clingo
language's syntax and semantics.

• Phase B - Implementation of Game Mechanic/Generation of
Content Participants were then asked to think of a game mechanic or
content generator that they would like to implement using ASP. We en-
couraged participants to be creative and come up with unique or chal-

Testing and Evaluation 55

lenging ideas. After participants had an idea in mind, the researcher
assisted them in creating the logic program for their game mechanic us-
ing ASP. We avoided instructing the participants during the modelling
process, where they would come up with the logic rules for their program
and limited our interference to helping with issues concerning clingo's
syntax. During the creation process, the researcher was available to
answer questions and provide guidance as needed. After each partici-
pant completed their game mechanic, the researcher evaluated it with
them to discuss the strengths and weaknesses of the approach taken,
and provided feedback on how it could be improved. The evaluation
of each participant's output was based on several criteria, such as how
well the game mechanic functioned, its uniqueness, its complexity, and
its potential for being implemented in an actual game.

• Phase C - Discussion Finally, we conducted a semi-structured in-
terview to receive qualitative feedback and elicit the participant's like-
ability and comments with regard to the proposed workflow.

Participant
Game Mechanic

Researcher

Assists

Designs

Figure 4.7: The experimental setup of the user study.

56 Methods

5. Case Studies

Few things are harder to put up
with than the annoyance of a good
example.

Mark Twain

The Case Studies section of this thesis presents some of the applications
we developed using Answer Set Programming (ASP) in the context of games.
These case studies demonstrate the potential of using ASP to create unique
game mechanics. The goal is to show the versatility of ASP in game develop-
ment, showing how it can be used to create different types of game mechanics
and solve game development challenges. The use of ASP in game develop-
ment allows for a more efficient and effective process as it allows for rapid
prototyping and reduces the need for extensive programming and testing.
The applications developed in these case studies provide a solid foundation
for future research in the use of ASP in game development and highlight the
paradigm's potential for practical application in the field.

5.1 Football (Soccer) Game
We developed a game scenario that showcases how ASP can model two teams
of adversarial agents and how the end result is both interesting and appropri-
ate. Our method avoids the need to implement path-finding algorithms like
A* [94] or the application of reinforcement learning techniques [90] which can
be hard to develop and debug during the stages of game prototyping. In this
scenario, we give the agent's a limited number of actions per turn while also
having multiple agents on each team, leading to emergent complexity in the
final result, without requiring for us to explicitly model it. The characteristics
of relatively small solving space and emergent complexity are present
in this example. Our goal is not to develop AI that plays football “well”, but
rather to create intelligent agents that enhance the game experience for the
human player. One possible application of our demo would be to have agents
playing football in the game world while the human player is exploring the
rest of environment. The player might have the choice to join in and play or
simply stay an observer. Indirect interaction with the agents playing football

57

58 Case Studies

Environment

Agent

Agent

Ball

Goal

Goal

Interacts

Int
era

cts

Traverses

Re
ach

es

Reaches

Inte
ract

s

Inte
ract

s

Protects

Protects

Traverses

Tr
av

er
se
s

Figure 5.1: The football game diagram.

could be achieved by a betting mechanic where the player tries to predict the
winning team. In most of these scenarios, the agent's skill level plays little
role.

Football is a popular sport involving two teams that kick a ball to score
a goal. The sport has had a close relationship with video games, with game
titles that involved the player character playing football matches against AI
opponents being developed since the beginning of the video game medium
[50,102].

5.1.1 The playing field
The playing field will consist of a flat terrain with two goals sitting opposite
of each other. Each goal is modelled as a rectangle that detects collisions.
Whenever the ball enters the collision shape, a point is scored for the team
opposite of the one the goal belongs to.

Football (Soccer) Game 59

5.1.2 Football-playing agents
The game is composed of two opposing teams, each of which has a goal.
Intuitively, the agent's goal is to score as many goals as possible. Encoding
this behavior in ASP can be done in multiple ways. We will show a possible
modelling of the problem and discuss how it affects the final gameplay result
as well as their pragmatic applications in a larger game experience.

We will show that the resulting logic program is not a monolithic array
of statements but rather a collection of separable modules containing logic for
sub problems [24]. These modules, when combined, produce an agent capable
of “playing football”.

We will follow an incremental approach to building the agent's behavior,
similar to an approach we hope a game programmer to take. Debugging logic
programs is often difficult because of their non-linear nature. Each constraint
and fact affects the entirety of the program. Thus, it would be beneficial to
the programmer and their sanity to triple check each subsection of the logic
program to make sure the modelling satisfies the programmer's intents.

One of our logic “modules” is the one relating an object's movement. At
each time step, the agent is allowed to move to one of eight (8) directions (up,
down, left, right, front, back as mentioned in section 4.1.3)

position(O,P ′, T + 1)← position(O,P, T) ∧move(O,D, T). (5.1)

This rule models the agent's ability to move around the game world. It
implies that any object o ∈ O that is in position p and moves in direction
d ∈ D at any timestep t ∈ T will end up in position p′ at timestep t + 1.
The mapping between p and p′ is based on an arbitrary mapping function
fNewPositionMove(p, d).

We also need to model the “kicking” mechanic, where an object can kick
another object and change its location.

position(O,P ′, T + 1)← position(O,P, T) ∧ kick(OO,O, up, T) (5.2)

⊥ ← kick(O,OO,, T) ∧ distance(O,OO,Distance, T) ∧Distance > Dmax

(5.3)
The variable OO refers to the object that is initiating the kick. The

logic is similar to the one in eq. (5.1), where now we simply have a different
mapping function between the positions p and p′, fNewPositionKick. However,
an integrity constraint (eq. (5.3)) is necessary in order for the agent to be
unable to kick the ball regardless of their relative position.

60 Case Studies

It becomes apparent how modelling the agent's logic using ASP can create
smart agents in a very cost-efficient manner. However, the agent currently has
no goal and running the above ASP program would yield an empty answer
set. We now propose some goal states to motivate the ASP solver.

Now, an important question arises: What is the simplest goal an agent
should have in order for their resulting behavior to resemble that of a football
player? It is not far-fetched to think that a player's main objective is to get
the ball as close as possible to the opponent's goal. This can be encoded in
ASP in a single line of code.

#minimize{D : distance(ball, goal,D, tend + 1)}. (5.4)
Using the modelling so far as a base, the designer can further flesh out

the agent's behavior. For example, there could be a “goalkeeper” agent that
tries to protect the goal and keep the ball far away from it.

#maximize&{D : distance(ball,my_goal,D, tend + 1)}. (5.5)
#minimize&{D : distance(player,my_goal,D, tend + 1)}. (5.6)

In essence, we are reusing eq. (5.4) with different objects as the distance
function's arguments. The ASP solver will provide us with answer sets that
optimize over all of the soft constraints.

The designer can mix and match these rules to easily create smart agents
with different behaviors. We can think of the base football rules (like move-
ment) as a separate ASP module which is combined with the rules that govern
the agent's goal inside the playing field. The ASP program can be split into
sub-programs using clingo's #program directive. From inside the game en-
gine API, the designer can choose the parts of the program to ground before
commencing the solving procedure. That way, different aspects of the agent's
AI can be “enabled” and “disabled” based on some conditions. This can allow
for mixing and matching different agent behaviors, enabling more expressive
experimentation and prototyping.

Finally, we added a feature where the agent's last “thought” is shows in
the game world as a speech bubble (fig. 5.2b). This can be thought of as a
debugging tool for the designer, allowing them to inspect the agent's reasoning
process. It could be argued that something similar could be achieved if inside
a traditional algorithm, some logging was added. However, using ASP, we
get this feature “for free”, without the need of adding error-prone logging code
inside the agent's logic. In addition, the game developer has immediate access
to the agent's last decision as a logical symbol, without having to translate
some abstract structure, only relevant inside the underlying algorithm, like a
graph's node into a human-readable format.

Level Generation 61

1 #program base.
2 % base rules ...
3

4 #program a.
5

6 #program b.
7

8 #program c.

Listing 11: Splitting the ASP program into modules. The programmer, from
inside the game engine API can choose which parts of the program to ground.

5.2 Level Generation
In this section, we delve into another practical application of Answer Set Pro-
gramming (ASP) in game development, specifically focusing on level genera-
tion. ASP offers a unique and flexible approach to generating game content,
including game levels, by defining rules and constraints in a logical framework.
We first try to develop a generic basis on which objects can be placed and
later try to apply some semantic meaning to the objects in order to guide the
solver to create appropriate artifacts. These examples provide insights into
the potential of ASP as a valuable tool in game development, opening up new
horizons for content creation and gameplay innovation. The characteristics of
brevity and emergent complexity are present in these examples.

5.2.1 Generic Object Placement
One approach on modelling object placement is one where the designer has
absolutely no preference of where to place each object, leaving it up to the
solver to decide the x, y, z coordinates of each one. This approach, although it
can be applicable in certain concepts, can lead to large solving times, with the
majority of the time being spent on the grounding phase, because of the large
amount of predicates generated. To limit grounding times, we put a limit on
the solver's available space for placing objects, with a constant parameter d.
The placing space will be d× d× d units large.

The designer starts off with an asset library, which contains all the objects
that can be placed. Our fact base will consist of the objects that will be
placed as well as their sizes. Acquiring an object's size in the x, y, z directions
is done through it's axis-aligned bounding-box (AABB) structure. This is
information is enough for our solver to place the objects abiding to given
constraints. Additional predicates can be added to add semantics to each

62 Case Studies

1 in(O, IX, IY, IZ) :- place(O, X, Y, Z), size(O, SX, SY, SZ),
2 X <= IX, X + SX > IX,
3 Y <= IY, Y + SY > IY,
4 Z <= IZ, Z + SZ > IZ,
5 dim(IX), dim(IY), dim(IZ).

Listing 12: The in(O,X, Y, Z) rule defined in Clingo.

object and enable for more complex reasoning.
The generation part of our program consists of a single choice atom, which

selects a tuple of (x, y, z) for each object to be placed.

{place(O,X, Y, Z) : dim(X), dim(Y), dim(Z)} ← object(O). (5.7)

On our first iteration, we will simply ensure that no two objects overlap
with each other. Instead of defining what an “overlap” is in our ASP program,
we will use a helper predicate in(O,X, Y, Z) which defines how an object O
occupies a set of points when it placed.

Now, overlaps can be eliminated with a single integrity constraint (eq. (5.8))
where no two different objects can occupy the same space.

⊥ ← in(O1, X, Y, Z) ∧ in(O2, X, Y, Z) ∧O1 ̸= O2 (5.8)
Another constraint can be added in order to ensure that no object is

floating in the air.

⊥ ← place(O,X, Y, Z) ∧ Y > 0 ∧ 0{in(OO,X, Y − 1, Z)}0. (5.9)
The constraint in eq. (5.9) states that if an object o is placed at (x, y, z)

and y > 0 (above ground), then there must be another object oo placed at
(x, y − 1, z).

Continuing with modelling steadiness in our scene, it might be the case
that large objects shouldn't be placed on top of smaller ones. For this, we
add a volume(o, v) rule which defines the volume of an object o, an on(o1, o2)
rule which defines that o1 is on top of o2 and a single integrity constraint.

volume(O,N)&← size(O,X, Y, Z) ∧N = X · Y · Z.
(5.10)

on(O1, O2)&← in(O2, X, Y, Z) ∧ size(O2, SX, SY, SZ) ∧ in(O1, X, Y + SY, Z).
(5.11)

⊥&← on(O1, O2) ∧ volume(O1, V 1) ∧ volume(O2, V 2) ∧ V 1 ≥ V 2.
(5.12)

Level Generation 63

1 #const n=5.
2

3 cellType(grass;wood;water;lava).
4

5 x(1..n).
6 y(1..n).

Listing 13: The grid size and cell types defined in Clingo.

After generating some placements, we can visualize the results in a 3D
environment. For visualization, we use the Godot game engine.

5.2.2 Tile Level Terrain Generation
When it comes to terrain generation, most games usually follow an approach
where some kind of noise function like Perlin noise [84] is used to determine
the type of terrain to be placed at some specific (x, y) location based on the
noise function's value. This approach has seen major adoption in the game
industry as it is used in major titles like Minecraft [77]. However, this ap-
proach although performant, does not allow for high levels of controllability.
For example, a designer cannot specify that they want a certain number of
mountains to be placed, or a river that flows through a specific area. Us-
ing ASP, we can generate natural-looking terrain using a highly expressive
language.

Modelling
First, we'll build an ASP program which decides the type of tile to be placed
on a 2D grid. We need t define a grid size and the cell types that our generator
will use.

Assigning a cell type to each cell is done by using a single choice rule.
The predicate cell(X,Y, T) assigns the cell type T to the cell at (X,Y).

1{cell(X,Y, T) : cellType(T)}1← x(X), y(Y). (5.13)

The above generation is semantically identical to placing cells randomly.
To add more meaning to our generation, we can add some constraints. First,
we'll add a helper predicate adjacent(X1, Y 1, X2, Y 2) which defines how two
cells are adjacent to each other.

When lava touches water, it turns into stone. One way for our generator
to respect this, is to add a constraint where a lava tile cannot be placed
adjacent to a water tile.

64 Case Studies

1 adjacent(X, Y, X + 1, Y) :- x(X), y(Y).
2 adjacent(X, Y, X - 1, Y) :- x(X), y(Y).
3 adjacent(X, Y, X, Y + 1) :- x(X), y(Y).
4 adjacent(X, Y, X, Y - 1) :- x(X), y(Y).

Listing 14: The adjacent(X1, Y 1, X2, Y 2) predicate defined in Clingo.

⊥ ← cell(X1, Y 1, lava) ∧ cell(X2, Y 2, water) ∧ adjacent(X1, Y 1, X2, Y 2).
(5.14)

What if we want to generate a map with a river flowing through it?
With the help of the adjacent(X1, Y 1, X2, Y 2) predicate, we can define a
connected(X1, Y 1, X2, Y 2) predicate. Two tiles are considered connected if
they are of the same type while also being adjacent to each other or connected
to a third tile.

connected(X,Y,X1, Y 1)&← adjacent(X,Y,X1, Y 1) ∧ cell(X,Y, T) ∧ cell(X1, Y 1, T).

connected(X,Y,X1, Y 1)&← connected(X,Y,X2, Y 2) ∧ connected(X1, Y 1, X2, Y 2).
(5.15)

Finally, we can add a constraint where a river that runs from the top of
the map to the bottom is generated.

⊥ ←∼ connected(1, 1, n, n). (5.16)

The described approach can be extended further to generate maps with
more complex constraints.

Similar to the work in [19] where the authors divide the to-be-generated
region into smaller sections and apply an ASP-based generator to each one
separately. This can allow for the creation of larger maps without the solving
times becoming unreasonably long. We follow a similar approach, where we
generate multiple n × n (where n ≤ 7) grids and “stitch” them together to
create a larger map. We also apply what we call “outer loop randomization”,
where the parameters of the ASP solver per sub-grid are also randomized, in
order to produce more diverse results.

Our final terrain generator consists of a Python script which calls the ASP
solver Clingo, getting the generated map as an answer set, matching each tile
type as a color. A final image is generated using the Image Magick1 library,
which represents the map as a grid of colored cells. Our final implementation
can be found in appendix B.

1https://imagemagick.org/

https://imagemagick.org/

Goal-Oriented Room Traversal 65

Running Time
The solution space for the terrain generator can become large as the size of
the grid increases. The total number of possible solutions is given by the
following equation.

Number of possible solutions =
n∏

i=1

n∏
j=1

Number of cell types = O(|T |n2

)

(5.17)

Where T is the set of cell types and n is the size of the grid.
The running time of the terrain generator is highly dependent on the size

of the grid. The Clingo solver allows us to enable parallel solving by using
the parallel-mode flag. However, even with parallel solving enabled, larger
grid sizes can take a long time to generate. To get over the large solving time
constraints, we can use a divide and conquer approach, where we split the
grid into smaller sub-grids.

When we apply our partitioning approach, the complexity of the gener-
ator becomes linear to the number of sub-grids (O(Ns)).

It can be seen that the total time for generating the entire grid increases
exponentially. This is why applying the partitioning technique is essential if we
wanted to generate larger maps. However, if we look at the generated terrain
not being a tile by tile representation of our world but rather an instance
where each square represents a different biome, we can see that ASP can be
utilized to generate higher-level artifacts. For example, in our game we could
have the logic determining what kind of biome a chunk of our world is written
in ASP and apply a more traditional procedural generation technique to the
tile by tile generation of each separate chunk.

5.3 Goal-Oriented Room Traversal
Our goal in this section is to create an agent which, given a goal will try
to formulate a sequence of actions to achieve it. We will employ a mod-
elling which is based on the theory of event calculus which was discussed in
section 3.1.4. This is an example of high-level reasoning, where the agent
formulates a long term plan consisting of high level actions, rather than some
short term reactive behavior which results in immediate action. The char-
acteristics of relatively small solution space and emergent complexity
are present in this example.

We will create an agent who can move from one room to another and
pick up objects. Our example is inspired from the work in [68].

Our code to make this agent functioning includes the following modules

66 Case Studies

1. The Discrete Event Calculus axioms (appendix A.1) module

2. Our problem's domain logic module

5.3.1 Actions and Events
As with our other examples, we need to encode some axioms which are derived
from the modelling of our specific problem. An example domain dependent
theory is the axiomatization of our scenario where a simple agent can move
from room to room, pick up and let go of objects. We will use the two fluents
inRoom(o, r) (where object o is inside room r) and holding(a, o) (where agent
a holds object o) and three actions walk(a, r1, r2), pickUp(a, o), letGoOf(a, o).

All the possible events/fluents are generated with the following rules

event(letGoOf(A,O))&← agent(A) ∧ object(O).

(5.18)
event(pickUp(A,O))&← agent(A) ∧ object(O).

(5.19)
event(walk(A,R1, R2))&← agent(A) ∧ room(R1) ∧ room(R2) ∧R1 ̸= R2.

(5.20)
fluent(inRoom(O,R))&← object(O) ∧ room(R).

(5.21)
fluent(holding(A,O))&← agent(A) ∧ object(O).

(5.22)

Our rules and integrity constraints will need to model certain aspects of
our world. Most of these will seem obvious, but they still need to be encoded
in our logic program since the Event Calculus axioms can only cover the parts
of our theory relating to the temporal relationship between the events in our
world and not topological relationships such as the simple fact that an object
can not exist in two places at the same time. Once these rules are in place,
however, we can have a robust

• An object can not be in two (or more) rooms at the same time.

• An agent that moves from room R1 to room R2 stops being in room R1.

• An agent can pick up an object only if they and the object are in the
same room.

• If an agent is holding one or more objects and moves to another room,
the objects will move room as well.

Goal-Oriented Room Traversal 67

• If an agent lets go of an object, they stop holding it.

With these rules inside our logic program, we can create agents that can
make sound decisions inside our logic world.

5.3.2 Agent Choice
One of the interesting parts of this approach is that we separate the existence
of an action predicate to whether it actually happened. For an action/event
e to have been realized at time t the predicate happens(e, t) needs to be true.
This enables us to easily encode the agent's actions in a single choice rule.

1 { happens(E, T) : event(E) } 1← time(T). (5.23)
Our agent chooses an action to do for every time step t
The agent's goal is formulated as follows in first-order logic

goal ← holdsAt(inRoom(book, kitchen),maxtime)

∧ holdsAt(inRoom(john, livingRoom),maxtime). (5.24)

The rule in eq. (5.24) entails that our goal is for the agent “bob” to be
inside the livingRoom and for the “book” to be inside the kitchen at time
t = maxtime.

We run the program for maxtime = 5 time steps and format the output2.

5.3.3 Locked Door Problem
Following, we have a slightly more complicated version of the problem, where
the door between the two rooms is locked. A key is placed with the agent
in the living room and the agent must pick up the key, unlock the door and
then move the book. The final goal remains the same, but the agent needs to
perform more actions to achieve it.

We need to modify one of the existing axioms to model the fact that a
door can be locked and also add a new event unlock(a, r) where agent a unlocks
room r. The relevant code can be found in appendix B. With minimal change,
our program can now handle more complicated problem domains.

5.3.4 Results
The agent is capable of formulating a plan to achieve its goal. The plan for
the first problem instance is as follows

2The format-output utility can be found in https://decreasoner.sourceforge.net/csr/ecasp/index.
html

https://decreasoner.sourceforge.net/csr/ecasp/index.html
https://decreasoner.sourceforge.net/csr/ecasp/index.html

68 Case Studies

1. Go from the kitchen to the living room

2. Pick up the book

3. Go to the kitchen

4. Let go of the book

5. Go back to the living room

The plan for the second problem instance

1. Pick up the key

2. Unlock the living room door

3. Go from the kitchen to the living room

4. Pick up the book

5. Go to the kitchen

6. Let go of the book

7. Let go of the key3

8. Go back to the living room

We can see that our agent is able to figure out that they must move the
book from one room into another, in a discrete sequence of actions. Had we
wanted the agent to execute an optimal plan, we only need to add a predicate
that counts the number of actions and minimize over it.

eventCount(N)&← N = #count{E, T : happens(E, T)}. (5.25)
#minimize&{N : eventCount(N)}. (5.26)

5.4 Study Participant Projects
In this section, we present the projects the study participants completed dur-
ing the evaluation of our framework. Details of the participants and the study
can be found in section 4.3.

During our evaluation study, participants, after being introduced to the
ASP paradigm, were asked to design a game mechanic using the proposed

3This action is optional since the agent holding the key is not part of the goal formulation.

Study Participant Projects 69

Application & Description Time Iterations Design Characteristic
Wind Simulator & Simulate wind direction in grid. 2.5h 3 B, E
Loot Generator & Generates reward combinations. 2h 1 B, S
Conversation Agent & Simulate a conversation. 1h 3 S, E
Traversing Agent & Agent that can navigate a 2D space. 1h 2 B
Level Generator & Generates game levels 1.5h 2 B, E
Ball Sort Solver & Solves/Generates puzzles. 1h 2 B, S
Futoshiki Solver & Solves/Generates puzzles. 0.5h 2 B, S
Level Generator & Generate levels with controllable difficulty. 3h 6 B, E

Table 5.1: The applications created by the participants during the study and
the design characteristics which they satisfy for ASP suitability. These are
brevity (B), relatively small solution space (S) and emergent complexity (E).
The assignment of characteristics is done based on the comparison of the
resulting application with the characteristics described in section 4.2.1.

framework. Here we present the projects that were created by the participants
and briefly comment on them and how they relate to our framework.

Despite, the small number of subjects, our assessment gave concrete re-
sults on the strengths and weaknesses of the proposed workflow. During the
study, participants created a wide range of applications. Most participants
gravitated towards creating generation programs rather than agent behavior
mechanics. However, there was still a wide variety of creations.

• Wind Simulator & Loot Generator: The Wind Simulator and
Loot Generator applications demonstrate the efficiency of ASP imple-
mentation, with relatively short development times of 2.5 hours and 2
hours, respectively. Both applications satisfy the design characteristic of
brevity (B), showcasing the concise nature of their ASP solutions. Ad-
ditionally, the Loot Generator aligns with the relatively small solution
space (S) characteristic, while the Wind Simulator showcases emergent
complexity (E) through its simulation of wind direction in a grid, result-
ing in complex outputs as small adjustments to the initial conditions of
the grid (placement of wind sources, mountains that block air flow) can
significantly affect the final result.

• Conversation Agent & Traversing Agent: The Conversation Agent
and Traversing Agent applications exemplify the versatility of ASP in
different domains. The Conversation Agent simulates conversations us-
ing ASP, while the Traversing Agent focuses on agent-based navigation
in a 2D space. Both applications showcase efficient implementation,
with development times of 1 hour and 1 hour, respectively. The Travers-
ing Agent satisfies the brevity (B) characteristic, while the Conversation
Agent exhibits both the relatively small solution space (S) and emergent
complexity (E) characteristics.

70 Case Studies

• Level Generator & Level Generator with Controllable Diffi-
culty: The Level Generator and Level Generator with Controllable
Difficulty applications highlight the use of ASP in generating game lev-
els. The Level Generator creates game levels efficiently within 1.5 hours,
while the extended version allows for customizable difficulty and requires
more development time (3 hours) and iterations (6). However, time per
iterations remains low. Both applications fulfill the brevity (B) char-
acteristic, and they demonstrate emergent complexity (E) through the
generation of diverse and dynamic game levels.

• Ball Sort Solver & Futoshiki Solver: The Ball Sort Solver and
Futoshiki Solver applications utilize ASP to solve and generate puzzles.
Developed in 1 hour and 0.5 hours, respectively, both applications show-
case the efficiency of ASP implementation. They satisfy the brevity (B)
and relatively small solution space (S) characteristics, highlighting the
suitability of ASP for puzzle-solving scenarios.

5.4.1 Participant Feedback
After participants completed their application, a short interview was con-
ducted. The interview consisted of a series of questions regarding the partic-
ipant's opinion on the applicability of the proposed workflow.

Would you use ASP again to create a game mechanic or content gen-
erator? Most participants answered positively to this question, with most
mentioning that it would more plausible that they would use ASP in more
logic-heavy and decision-making applications. All participants concluded that
ASP can be very powerful, but that it requires a lot of practice to master.

-- Participant 1: “I believe it would take me a long time to learn the
language. The syntax is strange, but I can create a mental model of
how it works.”

-- Participant 5: “I would use it again in simple scenarios.”

-- Participant 7 : “I would use Clingo again if what I wanted to build
involved logic and decision making.”

What did you find challenging about applying the proposed work-
flow and how could it be improved? A common issue that participants
faced was the unusual syntax that Clingo uses. Some participants mentioned
that the lack of a debugger made it difficult to find errors in their programs,
especially in later iterations where our programs consisted of multiple rules
and integrity constraints. One participant mentioned that the lack of a visual

Study Participant Projects 71

representation of the output of the program made it difficult to understand the
solutions produced. One participant gave the suggestion of “[…] a similar lan-
guage that is specifically made for game design.”, having premade axiomatic
rules for common game mechanics and structures.

-- Participant 7 : “It would be nice to have a graphical interface that shows
how the solver arrives at solutions.”

-- Participant 8: “[The workflow] could be improved if Clingo had better
syntax. Maybe an abstraction layer built on top of it.”

Does the proposed workflow provide design inspiration for devel-
oping games? This question was also answered positively. One partici-
pant with extensive experience in game development said that this workflow
“[…] gives you the ability to create entirely new game mechanics that you
wouldn't bother developing otherwise because of the programming difficulty”.
Most participants mentioned that the value of ASP lies in its ability to solve
problems briefly and concisely, in comparison to traditional programming lan-
guages. One participant mentioned that “[…] it is easier for someone that is
not a programmer to express their logic with constraints”.

One participant who was familiar with cybersecurity but unfamiliar with
ASP and game development mentioned that the paradigm could be used to
make high level decisions applying attacks usingMetasploit [78], a penetration
testing framework.

-- Participant 1: “It gives you the ability to create entirely new game
mechanics that you wouldn't bother developing otherwise because of
the programming difficulty.”

-- Participant 5: “[A game developer] might say something like "Oh, this
can be easily encoded using rules". Now, it's easier to think of a game
mechanic and come up with constraints to create it.”

In section 4.2 we presented a few general characteristics that constitute a
game mechanic as suitable for being implemented in ASP. Those were Brevity
of the rules being used in final model, a relatively Small solutions space and
Emergent complexity. Most of the projects developed by the participants
were able to satisfy at least two of these characteristics.

72 Case Studies

(a) A screenshot of the football playing field. It consists of two goals and four agents, two
on each team. The ball colliding with one of the semi-transparent rectangles will result in a
point being scored for the team opposite of the goal.

(b) The football players. Floating text above the agent indicates the agent's latest “thought”,
which is the action it will perform next. In this image the predicate move(self, left, 0) is part
of the optimal answer set produced by the ASP solver, meaning that in the next time-step,
the agent will move to the left.

Figure 5.2: Screenshots of our football game implementation.

Study Participant Projects 73

Agent

ASP Program A

ASP Program B ASP Program C

Figure 5.3: Changing the agent's behavior by enabling/disabling ASP mod-
ules.

Asset Library Fact Base Solver

Answer Sets

Scene

ASP Program

De
ve
lop

er
Im

pr
ov
es

Figure 5.4: The workflow of our level generation system. An asset library
consists of all the 3D assets the designer would like to place inside the
scene. These assets are placed inside the Fact Base as predicates of the form
object(O). size(O,X, Y, Z). These facts together with an ASP program are
fed into the solver, which will generate answer sets. Answer sets which in-
clude facts of the form place(O,X, Y, Z) are then interpreted by the game
engine, placing the assets inside the scene. After the scene is generated, the
designer can improve the ASP program, adding more constraints or changing
the existing ones, iterating over the process.

74 Case Studies

(a) A generated map with no con-
straints encoded.

(b) A generated map with a river
flowing through it and no water and
lava tiles touching (inside the same
sub-grid).

Figure 5.5: Examples of maps generated using our terrain generator.

Study Participant Projects 75

3 5 7 8

0

2

4

6

8

3 · 10−2 0.14 0.52
1.61

4 · 10−2
1.1

3.05

8.32

Grid Size (n× n)

G
ro
un

di
ng

+
So

lv
in
g
Ti

m
e
(s
)

No Constaints With Constraints

Figure 5.6: Indicative average generation times for different grid sizes. Com-
parison is made between the solving + grounding times with and without
constraints. Measurements were made on a machine with an Intel Core i7-
4770 CPU @ 3.40GHz.

76 Case Studies

(a) Wind direction simulator. Arrows
designate wind direction while ^ and
~ characters designate mountains and
wind sources respectively.

(b) Two instances of the level generator
with difficulty control. Above is the level
generated and below the optimal solution.
Image to the right is the lower difficulty
level.

(c) Four instances of the level generator

in_chest(diamond,3)
in_chest(gold,1)
in_chest(porkchop,9)

in_chest(diamond,3)
in_chest(gold,3)
in_chest(porkchop,1)

in_chest(diamond,3)
in_chest(gold,3)
in_chest(porkchop,9)

(d) Three instances of the loot generator.

Figure 5.7: The applications created by the participants during the study. A
single iteration is defined as the process of inspecting the program's produced
answer sets and making one or more significant modifications to it before the
process is repeated.

6. Conclusions

6.1 Summary
In this thesis we have provided some formal design heuristics and practical
implementations concerning the application of Answer Set Programming to
game development. Our proposals stem from the need of robust high level
programming interfaces to assist with the development of complex applications
like video games.

• We provided a software framework for integrating ASP solvers into game
engines, taking into account the specific requirements of the domain such
as real-time performance and the need for modularity and extensibility.
We explained how the game state can be mapped into ASP as collections
of facts and rules commenting on compromises that need to be made for
the approach to be viable in real applications. In addition, we presented
auxilary tools and libraries for augmenting the developer experience
when working with ASP.

• We proposed a set of design heuristics for recognising parts where game
logic can be elegantly expressed using ASP. These heuristics are based
on the analysis of the related work and serve as guidelines for developers
and designers to determine when and how to use ASP in their projects.

• We proposed a methodology for authoring ASP programs in a way that is
accessible to non-expert users. This is achieved by providing a number of
distinct steps based on guidelines provided by ASP experts and tailored
to the context of game development.

• We implemented a number of demos and presented them in tutorial
fashion, demonstrating how the proposed methodology can be used to
solve a variety of problems. The applications that we developed ranged
from multi agent game playing systems to procedural content generation.
In these examples we also commented on the limitations of the approach,
mainly in the realm of performance, and provided suggestions on how
to overcome them.

77

78 Conclusions

• We organised an empirical user study to evaluate the effectiveness of
the proposed methodology. We asked participants to design and im-
plement a game mechanic, with the help of the researcher. Then, an
interview was conducted to gather feedback on the experience. The re-
sults of the study indicate that the proposed methodology is effective
in assisting game developers in quickly implementing game logic while
also enabling rapid game prototyping. The method's effectiveness by
non-expert users, however, is limited by the idiosyncrasies of the ASP
paradigm.

6.2 Future Work
There is a plethora of interesting extensions and continuations of our work, a
number of which have been already discussed thtoughout this thesis. In this
section we briefly summarize some of the more important avenues of future
research and applications.

• Clingo's input language, although concise and in-line with other logic
programming languages, poses a steep learning curve to aspiring users.
A language built on top of it where the syntax resembles one of tra-
ditional programming languages while sustaining the program's seman-
tic properties would be stepping stone towards wider adoption of the
paradigm. Such work has been made in [6] where a Lisp programming
language dialect is given a Python-like syntax through a trans-pilation
process.

• High performance ASP solvers are a necessity for the approach to be vi-
able in larger scale applications. Taking advantage of GPU parallelism
is a promising avenue of research, as demonstrated by [28]. Such ad-
vances would be especially useful in the context of video games, where
it is not uncommon for users to have access to high performance GPU
hardware.

• Finally, future work should involve the application of ASP in larger-scale
video game projects, exploring how the proposed workflow can fit into
long running game development cases.

Bibliography
[1] ANDRADE, A. Game engines: a survey. EAI Endorsed Transactions on

Game-Based Learning Endorsed Transactions on Game-Based Learning
2, 6 (nov 2015), 150615.

[2] ANGiLiCA, D., IANNi, G., LiSi, F. A., AND PULiNA, L. AI and
videogames: a "drosophila" for declarative methods. In Proceedings
of the 10th Italian workshop on Planning and Scheduling (IPS 2022),
RCRA Incontri E Confronti (RiCeRcA 2022), and the workshop on
Strategies, Prediction, Interaction, and Reasoning in Italy (SPIRIT
2022) co-located with 21st International Conference of the Italian Asso-
ciation for Artificial Intelligence (AIxIA 2022), November 28 - Decem-
ber 2, 2022, University of Udine, Udine, Italy (2022), R. D. Benedictis,
N. Gatti, M. Maratea, A. Micheli, A. Murano, E. Scala, L. Serafini, I. Se-
rina, A. Umbrico, and M. Vallati, Eds., vol. 3345 of CEUR Workshop
Proceedings, CEUR-WS.org.

[3] ANGiLiCA, D., IANNi, G., AND PACENZA, F. Declarative AI design in
Unity using Answer Set Programming. In 2022 IEEE Conference on
Games (CoG) (aug 2022), IEEE.

[4] ANTONOVA, E. Applying Answer Set Programming in Game Level De-
sign. Master's thesis, Aalto University, 2015.

[5] ARAVANiS, T., DEMiRiS, K., AND PEPPAS, P. Legal Reasoning in Answer
Set Programming. In 2018 IEEE 30th International Conference on Tools
with Artificial Intelligence (ICTAI) (nov 2018), IEEE.

[6] BABENHAUSERHEiDE, A. Wisp: Whitespace to lisp, 2013.

[7] BAYER, M. SQLAlchemy: The Database Toolkit for Python, 2023.

[8] BiERE, A., HEULE, M., VAN MAAREN, H., AND WALSH, T., Eds. Hand-
book of Satisfiability (2009), vol. 185 of Frontiers in Artificial Intelligence
and Applications, IOS Press.

[9] BOENN, G., BRAiN, M., VOS, M. D., AND FFiTCH, J. Automatic music
composition using answer set programming, 2010.

79

80 BIBLIOGRAPHY

[10] BOWMAN, S. R. Eight Things to Know about Large Language Models,
2023.

[11] BRAiN, M., CLiFFE, O., AND DE VOS, M. A pragmatic programmer’s
guide to answer set programming. Sept. 2009. Software Engineering for
Answer Set Programming (SEA09) ; Conference date: 14-09-2009.

[12] BRATKO, I. Prolog programming for Artificial Intelligence. Pearson
education, 2012.

[13] BURRiS, S., AND SANKAPPANAVAR, H. P. A Course in Universal Algebra.
Graduate Texts in Mathematics. Springer, Berlin, Germany, 1981.

[14] BUSiNESS REPORTER. Trial and Error: The Human flaws in Machine
Learning. Business Reporter (2020).

[15] CABALAR, P., FANDiNNO, J., AND FiNK, M. Causal graph justifications
of logic programs, 2014.

[16] CABALAR, P., FANDiNNO, J., AND MUÑiZ, B. A System for Explain-
able Answer Set Programming. Electronic Proceedings in Theoretical
Computer Science 325 (sep 2020), 124--136.

[17] CABALAR, P., KAMiNSKi, R., MORKiSCH, P., AND SCHAUB, T. telingo
= ASP + Time. In International Conference on Logic Programming
and Non-Monotonic Reasoning (2019).

[18] CALiMERi, F., FiNK, M., GERMANO, S., HUMENBERGER, A., IANNi, G.,
REDL, C., STEPANOVA, D., TUCCi, A., AND WiMMER, A. Angry-HEX:
An Artificial Player for Angry Birds Based on Declarative Knowledge
Bases. IEEE Trans. Comput. Intell. AI Games Transactions on Com-
putational Intelligence and AI in Games 8, 2 (jun 2016), 128--139.

[19] CALiMERi, F., GERMANO, S., IANNi, G., PACENZA, F., PEZZiMENTi,
A., AND TUCCi, A. Answer Set Programming for Declarative Content
Specification: A Scalable Partitioning-Based Approach. 225--237.

[20] CANT, R., AND LANGENSiEPEN, C. Methods for Automated Object
Placement in Virtual Scenes. In 2009 11th International Conference on
Computer Modelling and Simulation (2009), IEEE.

[21] CHAUDHRi, V. Answer Set Programming, 2022.

[22] CONTRiBUTORS, G. E. Gdextension docs, 2021.

[23] CONTRiBUTORS, G. E. Gdnative docs, 2021.

BIBLIOGRAPHY 81

[24] COSTANTiNi, S. Integrating Answer Set Modules into Agent Programs.
613--615.

[25] DAS, I. Why Artificial Stupidity is the Next Frontier of Intelligence.

[26] DEGiCA. Rpg maker, 2021.

[27] DENNETT, D. Cognitive wheels: The frame problem of ai.

[28] DOViER, A., FORMiSANO, A., AND VELLA, F. Gpu-based parallelism
for asp-solving, 2019.

[29] DREPPER, U. How to write shared libraries.

[30] EiTER, T., FABER, W., LEONE, N., AND PFEiFER, G. Declarative
Problem-Solving Using the DLV System. In Logic-Based Artificial In-
telligence. Springer US, 2000, pp. 79--103.

[31] EiTER, T., IANNi, G., AND KRENNWALLNER, T. Answer Set Program-
ming: A Primer. In Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2009, pp. 40--110.

[32] FAN, X., WU, J., AND TiAN, L. A Review of Artificial Intelligence for
Games. In Lecture Notes in Electrical Engineering. Springer Singapore,
2020, pp. 298--303.

[33] FUSCÀ, D., GERMANO, S., ZANGARi, J., CALiMERi, F., AND PERRi, S.
Answer set programming and declarative problem solving in game AIs.
CEUR Workshop Proceedings 1107 (01 2013), 81--88.

[34] GEBSER, M., KAMiNSKi, R., KAUFMANN, B., OSTROWSKi, M., SCHAUB,
T., AND THiELE, S. A user’s guide to gringo, clasp, clingo, and iclingo,
2015.

[35] GEBSER, M., KAMiNSKi, R., KAUFMANN, B., OSTROWSKi, M., SCHAUB,
T., AND WANKO, P. Theory Solving Made Easy with Clingo 5. In
International Conference on Logic Programming (2016).

[36] GEBSER, M., KAMiNSKi, R., KAUFMANN, B., AND SCHAUB, T. Answer
Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers, 2012.

[37] GEBSER, M., KAMiNSKi, R., KAUFMANN, B., AND SCHAUB, T. Clingo
= ASP + control: Preliminary report. CoRR abs/1405.3694 (2014).

[38] GEBSER, M., KAMiNSKi, R., AND SCHAUB, T. aspcud: A linux pack-
age configuration tool based on answer set programming. Electronic
Proceedings in Theoretical Computer Science 65 (aug 2011), 12--25.

82 BIBLIOGRAPHY

[39] GEBSER, M., KAUFMANN, B., NEUMANN, A., AND SCHAUB, T. clasp:
A Conflict-Driven Answer Set Solver. In Logic Programming and Non-
monotonic Reasoning. Springer Berlin Heidelberg, pp. 260--265.

[40] GEBSER, M., KAUFMANN, B., AND SCHAUB, T. Conflict-driven answer
set solving: From theory to practice. Artif. Intell. 187 (2012), 52--89.

[41] GELFOND, M. Representing Knowledge in A-Prolog. In Computational
Logic: Logic Programming and Beyond. Springer Berlin Heidelberg,
2002, pp. 413--451.

[42] GELFOND, M., AND LiFSCHiTZ, V. The Stable Model Semantics For
Logic Programming. Logic Programming 2 (12 2000).

[43] GENESERETH, M. R., NiLSSON, N. J., AND PELL, B. General game
playing: Overview of the AAAI competition. AI Magazine 26, 2 (jun
2005), 62--72.

[44] GiUNCHiGLiA, E., LiERLER, Y., MARATEA, M., AND TACCHELLA, A.
Experiments with SAT-based Answer Set Programming. In Search and
Logic: Answer Set Programming and SAT, LaSh-06, A Workshop affil-
iated with ICLP, as part of FLoC (2006).

[45] GODOT ENGiNE TEAM. Godot Architecture, 2022.

[46] GODOT ENGiNE TEAM. Godot Design Philosophy, 2022.

[47] GODOT ENGiNE TEAM. Godot Engine, 2023.

[48] GOLED, S. Battle of Game Engines: Godot vs Unity.

[49] GRYZ, J. The Frame Problem in Artificial Intelligence and Philosophy.
Filozofia Nauki 21 (06 2013), 15--30.

[50] HALST, M. V. EA SPORTS FIFA and beyond: An illustrated history
of soccer video games.

[51] HAYES, B. The post-oop paradigm. American Scientist 91, 2.

[52] HUGHES, J. Why Functional Programming Matters. Computer Journal
32, 2 (1989), 98--107.

[53] HÖLLDOBLER, S., AND SCHWEiZER, L. Answer Set Programming and
CLASP - A Tutorial. In Proceedings of the Young Scientists' Inter-
national Workshop on Trends in Information Processing (YSIP) Co-
located with the Sixth International Conference on Infocommunicational
Technologies in Science, Production and Education (INFOCOM-6),

BIBLIOGRAPHY 83

Stavropol, Russian Federation, April 22-25, 2014 (2014), S. Hölldobler,
A. Malikov, and C. Wernhard, Eds., vol. 1145 of CEUR Workshop Pro-
ceedings, CEUR-WS.org, pp. 77--95.

[54] IRELAND, C., BOWERS, D., NEWTON, M., AND WAUGH, K. Understand-
ing object-relational mapping: A framework based approach. Int J Adv
Softw 2 (01 2009).

[55] ISLA, D. Halo 3 Objective Trees: A Declarative Approach to Multiagent
Coordination, 2001.

[56] JA´SKiEWiCZ, G. Prolog-Based Reasoning Layer for Counter-Strike
Agents.

[57] KAGENASHi. Godot Behavior Tree Asset, 2022.

[58] KAMiNSKi, R., AND SCHAUB, T. On the Foundations of Grounding in
Answer Set Programming. Theory and Practice of Logic Programming
(jul 2022), 1--60.

[59] KARTH, I., AND SMiTH, A. M. WaveFunctionCollapse: Content Genera-
tion via Constraint Solving and Machine Learning. IEEE Transactions
on Games 14, 3 (2022), 364--376.

[60] KAUFMANN, B., LEONE, N., PERRi, S., AND SCHAUB, T. Grounding
and Solving in Answer Set Programming. AIMag Magazine 37, 3 (oct
2016), 25--32.

[61] KHALiFA, A., GREEN, M. C., PEREZ-LiEBANA, D., AND TOGELiUS, J.
General video game rule generation. In 2017 IEEE Conference on Com-
putational Intelligence and Games (CIG) (aug 2017), IEEE.

[62] KLiMAS, C. Twine, 2021.

[63] KORTE, B., AND VYGEN, J. Combinatorial optimization, 4 ed. Algo-
rithms and Combinatorics. Springer, Berlin, Germany, Oct. 2007.

[64] KOSNiK, B. Dynamic shared objects: Survey and issues, 2006.

[65] KOWALSKi, R., AND SERGOT, M. A Logic-Based Calculus of Events.
In Topics in Information Systems. Springer Berlin Heidelberg, 1989,
pp. 23--55.

[66] KUBECZ3K. Godot Finite State Machine Asset, 2022.

[67] LAMPROU, E., AND FiDAS, C. Investigating applicability heuristics of
answer set programming in game development: Use cases and empirical
study. Under Review.

84 BIBLIOGRAPHY

[68] LEE, J., AND PALLA, R. Classical logic event calculus as answer set
programming. pp. 119--133.

[69] LEE, J., AND PALLA, R. Reformulating the situation calculus and the
event calculus in the general theory of stable models and in answer set
programming. CoRR abs/1401.4607 (2014).

[70] LiFSCHiTZ, V. Circumscription. Oxford University Press, Inc., USA,
1994, p. 297–352.

[71] LiN, F., AND ZHAO, Y. ASSAT: computing answer sets of a logic pro-
gram by SAT solvers. Artificial Intelligence 157, 1-2 (aug 2004), 115--
137.

[72] LiU, Y., HAN, T., MA, S., ZHANG, J., YANG, Y., TiAN, J., HE, H.,
Li, A., HE, M., LiU, Z., WU, Z., ZHU, D., Li, X., QiANG, N., SHEN,
D., LiU, T., AND GE, B. Summary of ChatGPT/GPT-4 Research and
Perspective Towards the Future of Large Language Models, 2023.

[73] MAiER, D. Representing database programs as objects. In Advances in
database programming languages. 1990, pp. 377--386.

[74] MCCARTHY, J. Circumscription—A form of non-monotonic reason-
ing. Artificial Intelligence 13, 1 (1980), 27--39. Special Issue on Non-
Monotonic Logic.

[75] MCCARTHY, J., AND HAYES, P. J. Some philosophical problems from the
standpoint of artificial intelligence. InMachine Intelligence 4, B. Meltzer
and D. Michie, Eds. Edinburgh University Press, 1969, pp. 463--502.
reprinted in McC90.

[76] MiLLER, R., AND SHANAHAN, M. Some Alternative Formulations of
the Event Calculus. In Computational Logic: Logic Programming and
Beyond. Springer Berlin Heidelberg, 2002, pp. 452--490.

[77] MiNECRAFT WiKi CONTRiBUTORS. Minecraft Noise Generator, 2023.

[78] MOORE, M. Penetration testing and metasploit.

[79] MUELLER, E., AND SUTCLiFFE, G. Reasoning in the event calculus using
first-order automated theorem proving. pp. 840--841.

[80] NEUFELD, X. Procedular Level Generation with Answer Set Program-
ming for General Video Game Playing. Master's thesis, Institute of
Knowledge and Language Engineering, Otto-von-Guericke University
Magdeburg, 2015.

BIBLIOGRAPHY 85

[81] NiEMELÄ, ILKKA, SiMONS, PATRiK, SYRjÄNEN, AND TOMMi. Smod-
els: A System for Answer Set Programming. CoRR cs.AI/0003033 (03
2000).

[82] ORKiN, J. Three States and a Plan: The AI of F.E.A.R. GDC 2006.

[83] PAPADiMiTRiOU, C. H. Computational complexity. Addison-Wesley,
1994.

[84] PERLiN, K. Improving noise. ACM Trans. Graph. Transactions on
Graphics 21, 3 (jul 2002), 681--682.

[85] RAjARATNAM, D. clorm: A Python ORM-like interface for the Clingo
Answer Set Programming (ASP) reasoner, 2023.

[86] RiBEiRO, T., INOUE, K., AND BOURGNE, G. Combining Answer Set
Programs for Adaptive and Reactive Reasoning.

[87] RiCCA, F., GRASSO, G., ALViANO, M., MANNA, M., LiO, V., IiRiTANO,
S., AND LEONE, N. Team-building with answer set programming in the
gioia-tauro seaport, 2011.

[88] RiTCHiE, D., WANG, K., AND LiN, Y.-A. Fast and Flexible Indoor Scene
Synthesis via Deep Convolutional Generative Models, 2018.

[89] SCHAUL, T. A video game description language for model-based or inter-
active learning. In 2013 IEEE Conference on Computational Inteligence
in Games (CIG) (2013), pp. 1--8.

[90] SCOTT, A., FUjii, K., AND ONiSHi, M. How does ai play football? an
analysis of rl and real-world football strategies, 2021.

[91] SEVERSKY, L. M., AND YiN, L. Real-time automatic 3D scene generation
from natural language voice and text descriptions. In Proceedings of the
14th ACM international conference on Multimedia (oct 2006), ACM.

[92] SHANAHAN, M. Solving the Frame Problem: A Mathematical Investiga-
tion of the Common Sense Law of Inertia. MIT Press, Cambridge, MA,
USA, 1997.

[93] SHANAHAN, M. The Event Calculus Explained. In Artificial Intelligence
Today. Springer Berlin Heidelberg, 1999, pp. 409--430.

[94] SHERROD, A. Data structures and algorithms for game developers. Cen-
gage Learning, South Melbourne, VIC, Australia, 2007.

[95] SHiNYA, M., AND FORGUE, M.-C. Laying out objects with geometric and
physical constraints. The Visual Computer 11, 4 (apr 1995), 188--201.

86 BIBLIOGRAPHY

[96] SiMPLiCABLE. Artificial Stupidity.

[97] SKARUPKE, M. Why Video Game AI does not Use Machine Learning .

[98] SMiTH, A. M. Mechanizing Exploratory Game Design. PhD thesis,
University of California, Santa Cruz, December 2012.

[99] SMiTH, A. M., AND MATEAS, M. Answer Set Programming for Pro-
cedural Content Generation: A Design Space Approach. IEEE Trans.
Comput. Intell. AI Games Transactions on Computational Intelligence
and AI in Games 3, 3 (sep 2011), 187--200.

[100] SPiNELLiS, D. The Importance of Being Declarative. IEEE Software 30,
1 (January/February 2013), 90--91.

[101] SPROAT, R. WordsEye: A Text-to-Scene Conversion System. In Ad-
vances in Natural Language Processing. Springer Berlin Heidelberg,
2002, pp. 1--1.

[102] THERMAL, S. A Brief History of Soccer Video Games.

[103] THiELSCHER, M. Answer Set Programming for Single-Player Games in
General Game Playing. In Logic Programming. Springer Berlin Heidel-
berg, 2009, pp. 327--341.

[104] TORRES, A., GALANTE, R., PiMENTA, M. S., AND MARTiNS, A. J. B.
Twenty years of object-relational mapping: A survey on patterns, so-
lutions, and their implications on application design. Information and
Software Technology 82 (2017), 1--18.

[105] TRAZZi, M., AND YAMPOLSKiY, R. V. Artificial Stupidity: Data We
Need to Make Machines Our Equals. Patterns 1, 2 (may 2020), 100021.

[106] UNiTY TECHNOLOGiES. Unity, 2023.

[107] UNiVERSiT`A DELLA CALABRiA. ASP Standardization, 2013.

[108] ViLONE, G., AND LONGO, L. Explainable Artificial Intelligence: a Sys-
tematic Review, 2020.

[109] WEiNZiERL, A., TAUPE, R., AND FRiEDRiCH, G. Advancing lazy-
grounding asp solving techniques -- restarts, phase saving, heuristics,
and more, 2020.

[110] WEST, M. Intelligent Mistakes: How to Incorporate Stupidity Into Your
AI Code.

BIBLIOGRAPHY 87

[111] XiA, B., YE, X., AND ABUASSBA, A. O. Recent Research on AI in
Games. In 2020 International Wireless Communications and Mobile
Computing (IWCMC) (jun 2020), IEEE.

[112] XKCD. NP-Complete, 2022.

[113] XU, K., STEWART, J., AND FiUME, E. Constraint-based Automatic
Placement for Scene Composition. Proceedings - Graphics Interface (06
2002).

[114] ZACARiAS, F., CUAPA, R., JiMENEZ, L., AND VAZQUEZ, N. Modelling of
Intelligent Agents Using A–Prolog. International Journal of Artificial
Intelligence and Applications 10, 2 (mar 2019), 1--11.

[115] ZHAO, W. X., ZHOU, K., Li, J., TANG, T., WANG, X., HOU, Y., MiN,
Y., ZHANG, B., ZHANG, J., DONG, Z., DU, Y., YANG, C., CHEN, Y.,
CHEN, Z., JiANG, J., REN, R., Li, Y., TANG, X., LiU, Z., LiU, P., NiE,
J.-Y., AND WEN, J.-R. A Survey of Large Language Models, 2023.

88 BIBLIOGRAPHY

A. Axioms

In the context of our problems, we will be dealing with Discrete Event Calculus
(DEC), since Answer Set Programming can only deal with discrete domains.
Following, we present the twelve DEC axioms [76,79].

A.1 Discrete Event Calculus
Axiom 1.

∀T1, F, T2(stoppedIn(T1, F, T2)⇔
∃E, T (T1 < T < T2 ∧ happens(E, T) ∧ terminates(E,F, T))). (A.1)

Axiom 2.

∀T1, F, T2(startedIn(T1, F, T2)⇔
∃E, T (T1 < T < T2 ∧ happens(E, T) ∧ initiates(E,F, T))). (A.2)

Axiom 3.

∀E, T1, T1, T2, T2((happens(E, T1) ∧ initiates(E, T1, T1) ∧ T2 > 0 ∧
trajectory(T1, T1, T2, T2) ∧ ¬stoppedIn(T1, T1, T1 + T2))⇒

holdsAt(T2, T1 + T2)). (A.3)

Axiom 4.

∀E, T1, T1, T2, T2((happens(E, T1) ∧ terminates(E, T1, T1) ∧ T2 > 0 ∧
antiTrajectory(T1, T1, T2, T2) ∧ ¬startedIn(T1, T1, T1 + T2))⇒

holdsAt(T2, T1 + T2)). (A.4)

Axiom 5.

∀F, T ((holdsAt(F, T) ∧ ¬releasedAt(F, T + 1)∧
¬∃E(happens(E, T) ∧ terminates(E,F, T)))⇒

holdsAt(F, T + 1)). (A.5)

89

90 Axioms

Axiom 6.

∀F, T ((¬holdsAt(F, T) ∧ ¬releasedAt(F, T + 1)∧
¬∃E(happens(E, T) ∧ initiates(E,F, T)))⇒ ¬holdsAt(F, T + 1)). (A.6)

Axiom 7.

∀F, T ((releasedAt(F, T)∧
¬∃E(happens(E, T) ∧ (initiates(E,F, T) ∨ terminates(E,F, T))))⇒

releasedAt(F, T + 1)). (A.7)

Axiom 8.

∀F, T ((¬releasedAt(F, T)∧
¬∃E(happens(E, T) ∧ releases(E,F, T)))⇒

¬releasedAt(F, T + 1)). (A.8)

Axiom 9.

∀E, T, F ((happens(E, T) ∧ initiates(E,F, T))⇒ holdsAt(F, T + 1)). (A.9)

Axiom 10.

∀E, T, F ((happens(E, T) ∧ terminates(E,F, T))⇒ ¬holdsAt(F, T + 1)).
(A.10)

Axiom 11.

∀E, T, F ((happens(E, T) ∧ releases(E,F, T))⇒ releasedAt(F, T + 1)).
(A.11)

Axiom 12.

∀E, T, F ((happens(E, T) ∧ (initiates(E,F, T) ∨ terminates(E,F, T)))⇒
¬releasedAt(F, T + 1)). (A.12)

B. Code Listings

Full listings of the code used in this thesis are provided in this git repository.

91

https://github.com/vagos/asp-games

92 Code Listings

C. Article

The work in this thesis resulted in a publication [67]. The article is included
in this chapter.

Investigating Applicability Heuristics of Answer Set
Programming in Game Development:

Use Cases and Empirical Study
Evangelos Lamprou, Christos Fidas

C.1 Abstract
The game industry is continuously growing and evolving, with new ways of cre-
ating games being developed. However, even with the availability of powerful
game engines, developers are still forced to spend time and effort implement-
ing common game features, such as basic AI, path-finding, and simple scene
variations. This can become a serious detriment for indie game developers.
The present research focuses on the application of Answer Set Programming
(ASP) methods within the game development process, aiming to support rapid
and cost-effective game prototyping for indie game developers. Specifically,
we present a pragmatic approach to the usage of ASP for game development
within certain use cases and we report on evaluation results based on feedback
that was received from end-users. Analysis of results demonstrates how ASP
can be used, providing new ways of thinking about game mechanics and con-
tent creation, and eventually paving the way for new game design frameworks
and possibilities. On the downside, adoption of the suggested method can be
difficult due to unfamiliarity with the ASP programming paradigm.

C.2 Introduction
The game industry is continuously growing and evolving. As with other in-
dustries, new ways of creating games are being developed. Game engines offer
a plethora of tools and features that can aid game designers in bringing their

93

94 Article

ideas to life [1]. In most game development engines, however, game program-
mers are presented with imperative languages. Traditional imperative pro-
gramming is a programming paradigm that specifies step-by-step instructions
for the computer to execute using variables, loops and conditional statements.
Declarative programming focuses on what a program should accomplish, using
high-level abstractions to define the problem domain, allowing the computer
to reason about the solution.

Answer Set Programming (ASP) [31] is a declarative programming paradigm
that has shown promise in solving complex problems in various fields such as
employee assignment [87], legal reasoning [5], resolution of software package
configuration errors [38] and automatic music composition [9].

Declarative techniques have already been applied in the context of games
[2], with examples ranging from commercial grade software such as the game
F.E.A.R [82] and Halo 3 [55] to more research-centric approaches such as the
Video Game Playing Description Language (GDL) [89] and the Ludocore en-
gine [99], where game semantics are encoded inside declarative logical frame-
works. Now, more closely relating to our work, ASP has also seen application
in games. Agents have been developed that can solve puzzles [33,103,114] or
play games like Angry Birds [18]. The work in [4] and [99] explores the appli-
cation of ASP for procedural content generation, focusing on the creation of
puzzle levels while also highlighting how ASP can act as a highly expressive
tool for creating game content generators in a time-effective manner.

This paper elaborates on an ASP framework for game development and
presents its added value in the context of specific use cases in game program-
ming. Specifically, we present evaluation results that highlight that using
declarative tools can significantly speed up development time and relieve game
programmers from the burden of understanding and implementing complex
algorithms, leading to more flexible and reusable code while also enabling a
different creative approach to game development.

Motivation and Contribution. In small game development teams (1
- 5 people) the role of developer and designer are often intertwined. That
means that a game designer often has to interrupt the creative process of
refining and testing a game idea to implement complex game logic. There is
still a lack of tools suitable for rapid prototyping. As a solution, we propose a
framework for using ASP in games, comment on aspects of game development
suitable to be implemented in ASP and present some case studies. We also
conduct an evaluation of ASP with developers at various levels of familiarity
with the paradigm. To our knowledge, a user study on the merits of using
ASP for game creation has not been previously conducted.

The paper is structured as follows. First we present background knowl-
edge for understanding the ASP programming paradigm. Next, we present
the suggested framework that can be utilized by indie game developers and
finally, we present the results of the evaluation study.

Background Theory on Answer Set Programming 95

C.3 Background Theory on Answer Set Pro-
gramming

Design

ASP Program Answer Sets

Artifacts

Model
Solve

Integration

Inspire

Figure C.1: Game development workflow with the help of ASP tooling. The
designer starts with an initial goal, the design of a game mechanic/behav-
ior/set of artifacts which leads to a specification in the form of an ASP pro-
gram. The program's solutions can help to further refine the initial design as
missing or unwanted aspects of it become apparent after its integration with
the rest of the game [98].

Answer Set Programming (ASP) [31] is a problem-solving paradigm with
roots in logic programming and non-monotonic reasoning. The work of [42]
first formalized the semantics of stable models and the ASP core language.
As shown in fig. C.1, the programming model of ASP is one where the pro-
grammer models the problem domain, with the solution being handled by
a solver program. Programming using this paradigm is done in a family of
languages sometimes called AnsProlog [41]. In our work, we will be using the
input language of Clingo [37], which is a high-performance integrated solver
with a large collection of libraries and bindings helpful in integrating it with
external tools.

The syntax is similar to the one of Prolog, a popular deductive logic
programming language. It employs a unified approach to represent both code-
like and data-like knowledge through logical terms. These terms can be atoms,
which are named symbols, numbers, strings, or compounds that consist of
a functor (a symbol) and a list of logical terms serving as arguments. By
utilizing collections of logical terms (listing C.1), any data structure relating
to the state of the game world can be easily represented.

96 Article

Listing C.1: A set of facts describ-
ing game elements/game state.
object(house).
position(player, vec3(1, 0, 1)).
size(house, vec3(4, 4, 4)).
tile(1, 1, water).
move(player, left).
object(orc).
object(frog).

Listing C.2: Logic rules describing
relationships between entities and
connection between action and ef-
fect.
damaged(player) :- attacked(player).
damaged(player) :- fall(player).
hostile(X) :- enemy(X).
friend(X) :- object(X), not hostile(X).
pos(player,X+1,Y,T+1) :- pos(player,X,Y,T),

move(player,right).

For more complex reasoning, the program author can add logical rules
which can be expressed using the :- operator. The left side of a rule is called
its “head” and the right side its “body”. Simply put, the head of a rule is
true if its body is true. Inside a single rule, commas between atoms signify
the “and” logical operation while repeating the same rule head with different
bodies signifies the “or” operation. Rules can be used to specify the effects of
actions or derive properties of game objects. In rules, an atom starting with
a capital letter designates a variable.

The choice/generation capabilities of Answer Set Programming come
from the ability of the program author to allow the ASP solver to make
choices among a set of atoms. These can be encoded using “choice rules”.
Listing C.3: A choice
rule.
{chosen(X,Y) : person(X)} :-

house(Y).

Listing C.4: An in-
tegrity constraint.
:- chosen(X, Y), chosen(Z, Y),

X == Y.

Listing C.5: An opti-
mization directive.
#minimize{C : cost(E,C)}.

The choice rule in listing C.3 is translated as “for each house Y , choose
among the set of atoms chosen(X,Y), where X is a person”. This can produce
several answer sets, one for each possible variable assignment. However, some
of the generated answer sets are invalid in the context of the problem. For
example, it should not be allowed for two people to have chosen the same
house. Such rules can be encoded elegantly in the form of “integrity con-
straints” (listing C.4) which entail what is not allowed to hold in the answer
sets generated. This provides a mechanism for “filtering out” unwanted answer
sets. In problems where there might be multiple valid answer sets, we can also
add optimization directives, instructing the solver to output optimal answer
sets over certain variables. The program author can use the #minimize and
#maximize directives (listing C.5).

To compute answer sets, ASP programs are inputted into ASP solvers.
These solvers provide efficient mechanisms to generate the set of valid answers
to the given problem. An ASP solver can be thought of as a black box, with
them being interchangeable as long as the input language semantics remain
the same.

Heuristics and Method for Applying ASP in the Game Development Process97

C.4 Heuristics and Method for Applying ASP
in the Game Development Process

An important aspect of the suggested framework is the determination of spe-
cific game design heuristics pointing towards game components suitable for
ASP programming approaches. We suggest the following applicability princi-
ples/heuristics:

• ASP Applicability Heuristic (A). Brevity: ASP (and declarative
programming in general) can reduce software complexity, [100] allowing
for concise code [12]. This however requires that when modelling a
game mechanic, only its important aspects are encoded. For example,
in a maze game, only essential elements like maze layout, starting point,
treasure location, and movement rules would be included.

• ASP Applicability Heuristic (B). Relatively Small Solution
Space: Avoid scenarios where solving times become very large. A small
solution space involves the generator/agent having a limited amount of
options encoded in each of the ASP program's choice rules. For example,
a designer should opt to have an agent move in one of four directions
(up, down, left, right), rather than the full range of motion. A physics
simulation can then be employed through the game engine to introduce
natural-looking movement
Designers can mitigate this limitation by breaking down the problem
into smaller sub-problems. In [19], the authors decoupled the gener-
ation of a dungeon's topology from the content of each of the rooms,
reducing generation times, while in [86], an agent's different states (eat,
hiding, action) are split into smaller ASP program modules, using meta-
reasoning to decide which relevant parts of the knowledge base will be
used for solving.

• ASP Applicability Heuristic (C). Emergent Complexity: Create
scenarios where interesting behavior emerges when agents are observed
interacting with each other and the environment inside the game world
or when the generated artifacts exhibit interesting patterns that were
not explicitly modeled in the ASP program. In [82], where a declara-
tive planning layer was added to agents in the game F.E.A.R, complex
behaviors emerged from a combination of simple goals and actions to-
gether with the dynamic state of the game world. The Portal game
levels generated using ASP in [4] were complex and challenging, while
modeling only involved specifying how a level is solvable and ensuring
its topological integrity.

98 Article

Game World

ASP Solver ASP Program

Game Integration

Input
Logic

Atom
s Rules/Constraints

Answer Sets
Agent Behavior/Artifacts

Figure C.2: High level overview of ASP integration into a game engine. The
Game World consists of the current game state and the information of all the
game objects inside of it. Input logic atoms are the facts used to describe the
current state of the game world. These, together with the rules and constraints
of the ASP program, are fed into the ASP solver, which then outputs answer
sets. These describe logic such as the actions that an agent should take or
where an object should be placed. Through the Game Integration component,
these answer sets are used to update the game world.

Furthermore, we propose a standardized development methodology (fig. C.2)
to guide aspiring developers to successfully apply ASP to their applications by
providing some general programming guidelines relating to ASP modelling,
based on the “guess and check” paradigm [34].

1. Step (a): Determine Input and Output Atoms: The set of input
atoms provides the context required for the ASP program to give correct
results. These are usually dynamic aspects of the game's runtime and
change at each invocation of the ASP solver. Examples of these are the
starting location of an agent or the list of objects that need to be placed.
On the other hand, output atoms encode the results produced by the
solver and which will be interpreted by the game runtime as artifacts
or agent behavior. These include things like the direction at which an
agent will move in the next timestep or the location an object should
be placed at.

2. Step (b): Generate “Random” Answer Sets: During the develop-
ment phase, the programmer can efficiently construct an ASP program

Proof of Concept and Case Studies 99

comprising of choice rules to generate partially random outcomes, con-
sidering the output atoms. Although the resulting artifacts or behavior
may be flawed or unsuitable, this approach facilitates the identification
and troubleshooting of potential technical problems. This stage also in-
volves the creation of a visualizer or the integration of the solver with
the game runtime to enhance the debugging process. A software archi-
tecture for embedding ASP into a game engine is proposed in [3].

3. Step (c): Add Integrity Constraints/Optimization Directives:
Based on the current problem's domain, it is necessary to add integrity
constraints and/or optimization directives. Constraints provide direct
control over the produced answer sets for them to comply both with the
game's ruleset as well as the designer's ideas. Among them, if needed,
the solver can output the most optimal ones based on some variable
using optimization rules.

C.5 Proof of Concept and Case Studies
To illustrate the aforementioned applicability heuristics of ASP in the context
of game development, we devised a number of case studies1.

C.5.1 Case study (a): Tile-Level Terrain Generation
With terrain generation, games often follow an approach where a noise func-
tion like Perlin noise [84] is used to determine the type of terrain to be placed
at some specific (x, y) location. This approach has seen major adoption in the
game industry as it is used in major titles like Minecraft [77]. However, this
approach although performant, does not allow for high levels of controllabil-
ity. For example, a designer cannot specify that they want a certain number
of mountains to be placed, or a river that flows through a specific area. Us-
ing ASP, we can generate natural-looking terrain using a highly expressive
language. The ASP applicability heuristics of brevity and emergent com-
plexity are present in this example. In our ASP program, the placement of
tiles inside the grid can be encoded in a single-choice rule. Then, through
integrity constraints, we add rules that propagate through the entire grid,
creating interesting patterns.

The application of our proposed methodology works as follows:

1. Determine output atoms, which are the type of tile in each of the grid's
locations (an atom of the form tile(x, y, type)). Input atoms consist of

1Source code from our examples as well as the projects developed in the user study can be found in https:
//anonymous.4open.science/r/asp-games-anon/README.md.

https://anonymous.4open.science/r/asp-games-anon/README.md
https://anonymous.4open.science/r/asp-games-anon/README.md

100 Article

predicates that will control certain aspects of the generation. For exam-
ple, the programmer could input a single fact of the form tile(1, 1, water)
which will force the generator to place the specific type of tile on that
location.

2. Add a single choice rule that places a tile of random type at every grid
space. At this point, we also develop a script that takes the output of
the solver and translates the output atoms into colored pixels.

3. The generator's output is controlled using integrity constraints. In our
example, we added constraints where no “water” and “lava” tiles can
touch while there must also be a river flowing along the diagonal.

(a) A generated map with
no constraints encoded.

(b) A generated map with
a river flowing through it
and no water and lava tiles
touching (inside the same
sub-grid).

Figure C.3: Examples of maps generated using our terrain generator.

C.5.2 Case study (b): Football (Soccer) Game
We developed a game scenario that showcases how ASP can model two teams
of adversarial agents and how the result is both interesting and appropriate.
Our method avoids the need to implement path-finding algorithms like A*
[94] or the application of reinforcement learning techniques [90] which can be
hard to develop and debug during game prototyping. The characteristics of
relatively small solution space and emergent complexity are present in
this case study. The solution space can be controlled by reducing the number
of time-steps the agent will “see” in the future. Emergent complex behavior
comes from the fact that we will not explicitly ask the agent to kick the ball to
score a goal. Rather, we explain through logical rules how the ball's location
changes when kicked and allow the ASP solver to derive a winning strategy
based on that information.

Empirical Study 101

1. In this case study, the input atoms are the location of critical game
world objects like the location of the ball, the two goals, and the other
players. Output atoms will be the agent's decisions of where to move,
whether they will kick the ball and towards which direction.

2. We add choice rules for the agent's possible actions. At this point, we
integrate the solver inside the Godot [47] game engine, translating the
output atoms into actions inside the game world.

3. We finally add integrity constraints, making the agents avoid colliding
with each other as well as an optimization directive that tries to mini-
mize the ball's distance to the enemy's goal. The sequence of actions an
agent will take will be the ones that bring the ball closer to the goal.

(a) A top-down screenshot of the football
playing field. It consists of two goals and
four agents, two on each team. The ball
colliding with one of the semi-transparent
rectangles will result in a point being
scored for the team opposite the goal.

(b) The football players. The floating text
above the agent indicates the agent's lat-
est “thought”, which is the action it will
perform next. In this image the predicate
move(self, left, 0) is part of the optimal
answer set produced by the ASP solver,
meaning that in the next timestep, the
agent will move to the left.

Figure C.4: The football game implementation.

C.6 Empirical Study
C.6.1 Research Questions
The main research questions of the empirical study were to investigate: RQ1)
Whether the aforementioned applicability heuristics can be confirmed by third-
party game designers within the context of their own game designs; RQ2)
whether the suggested ASP methodological approach supports creativity in
game design and RQ3) whether end-users found difficulties in applying the
suggested workflow.

102 Article

C.6.2 Participants
We recruited a total of 8 participants (2 female and 6 male), all of whom were
undergraduate Electrical and Computer Engineering students. All of them
had experience programming with imperative languages, with 3 having ex-
perience with logical languages (either Prolog or Clingo). All but two of the
participants had prior experience with game development, in the context of
personal projects. Participants were informed that no personal data was col-
lected aside from their answers to the interview part of the study. On average,
each of the participants took part in the study procedure for a duration of
0.5 to 3 hours, resulting in a total study length of approximately twenty-four
hours.

C.6.3 Study Procedure
The study conducted was a one-on-one user study, where each participant
worked individually with the researcher. The study utilized all collected data
in an anonymous manner, and participants had the freedom to withdraw from
the study at any time of their choosing.

• Phase A - Introduction to ASP. The study began with a brief
overview of Answer Set Programming (ASP) technology and the Clingo
language's syntax and semantics.

• Phase B - Implementation of Game Mechanic/Generation of
Content. Participants were then asked to think of a game mechanic
or content generator that they would like to implement using ASP. We
encouraged participants to be creative and come up with unique or chal-
lenging ideas. After participants had an idea in mind, the researcher as-
sisted them in creating the logic program for their game mechanic using
ASP. We avoided instructing the participants during the modeling pro-
cess, where they would come up with the logical rules for their program
and limited our interference to helping with issues concerning Clingo's
syntax. During the creation process, the researcher was available to
answer questions and provide guidance as needed. After each partici-
pant completed their game mechanic, the researcher evaluated it with
them to discuss the strengths and weaknesses of the approach taken and
provided feedback on how it could be improved.

• Phase C - Discussion. Finally, we conducted a semi-structured inter-
view to receive qualitative feedback and elicit the participant's likeability
and comments concerning the proposed workflow.

The study provided valuable insights into how well participants were able

Analysis of Results 103

to understand and apply ASP to create game mechanics, as well as identify
the strengths and limitations of this approach.

C.7 Analysis of Results
C.7.1 RQ1: Applicability of suggested ASP Heuristics

in Game Development Scenarios
Given the number of participants, our assessment is based rather on a quali-
tative than a quantitative research approach. The participants gave concrete
results on the strengths and weaknesses of the proposed workflow. More-
over, during the study, a range of applications were created. Most gravitated
towards creating generation programs rather than agent behavior mechanics.
Application Description Design Characteristic Duration Iterations
Wind Direction Simulator Simulate wind direction in a grid. B, E 2.5h 3
Loot Generator Generates reward combinations. B, S 1h 2
Conversational Agent Simulate a conversation. S, E 2h 4
Space Traversing Agent Agent that can navigate a 2D space. B 1h 2
Level Generator Generates game levels B, E 2h 5
Ball Sort Solver Solves/Generates instances of puzzle game. B, S 1h 2
Futoshiki Solver Solves/Generates instances of puzzle game B, S 0.5h 2
Level Generator Generate levels with controllable difficulty. B, E 3h 6

Table C.1: The applications created by the participants during the study and
the design characteristics which they satisfy for ASP suitability. These are
brevity (B), relatively small solution space (S), and emergent complexity (E).
Duration measures the total development time. A single iteration is defined
as the process of inspecting the program's produced answer sets and making
one or more significant modifications.

Participants demonstrated competence in applying the ASP applicability
heuristics throughout the study. Their creations showcased an understanding
of at least one of brevity, consideration of relatively small solution spaces, and
the ability to capture emergent complexity. These observations affirm the
practicality and effectiveness of the ASP applicability heuristics in guiding
participants towards successful implementation and utilization of ASP in the
game development process.

C.7.2 RQ2: Does the suggested ASP methodological
approach supports creativity in game design?

We asked participants whether the proposed workflow provide de-
sign inspiration for developing games. A participant with extensive
game development experience stated that the workflow provides the oppor-
tunity to conceive entirely novel game mechanics that would otherwise be

104 Article

overlooked due to the challenges associated with traditional programming.
This participant emphasized that Answer Set Programming (ASP) allows for
the creation of game mechanics that might otherwise be deemed too complex
to develop.

The majority of participants identified the primary value of ASP as
its ability to address problems succinctly. They expressed that ASP en-
ables concise problem-solving, streamlining the development process. More-
over, one participant specifically noted that ASP offers advantages for non-
programmers, as it facilitates the expression of logical constraints by individ-
uals without extensive programming experience.

Most participants after being introduced to the ASP paradigm were able
to intuitively recognize scenarios where it could be applicable. Of the design
heuristics we proposed, the one of relatively small solution space was the one
that was hardest to apply and what participants felt as most limiting to their
design.

While some participants mentioned a steep learning curve, overall, the
ASP approach was seen as a powerful and creative method for game design. A
designer/programmer pair (or a single designer also capable of programming
in the paradigm) could quickly go from idea to working prototype, with time
between iterations being minimized.

-- Participant 1: “It gives you the ability to create entirely new game
mechanics that you wouldn't bother developing otherwise because of
the programming difficulty.”

-- Participant 5: “[A game developer] might say something like "Oh, this
can be easily encoded using rules". Now, it's easier to think of a game
mechanic and come up with constraints to create it.”

During the study, participants iteratively added constraints. This re-
sulted in a refinement process where more complex rules and constraints were
added one at a time. The produced artifacts were examined to validate the cor-
rectness of their modeling and participants often came up with new rules and
constraints after noticing some undesirable patterns or behavior in the out-
put. This empirically confirms the validity of the conceptual loop in fig. C.1,
where the results from the designer's modeling can fuel their creative process.

We asked participants whether they would use ASP again to create
a game mechanic or content generator. The majority of participants
expressed a positive response when asked about their potential usage of An-
swer Set Programming (ASP). Specifically, they emphasized its suitability
for decision-making applications. Participants widely agreed that ASP could
prove highly effective for programming game logic. However, they acknowl-
edged that mastering ASP requires substantial practice to utilize comfortably.

Conclusions and Future Work 105

-- Participant 1: “I believe it would take me a long time to learn the
language. The syntax is strange, but I can create a mental model of
how it works.”

-- Participant 5: “I would use it again in simple scenarios.”

-- Participant 7 : “I would use Clingo again if what I wanted to build
involved logic and decision making.”

C.7.3 RQ3: Difficulties in the suggested ASP workflow
application

We asked participants what they found challenging about applying
the proposed workflow. One common challenge encountered by partici-
pants was the unfamiliar syntax used in Clingo. They found it to be uncon-
ventional, leading to difficulties in writing and reading programs. Moreover,
the absence of a debugger posed a significant obstacle in identifying errors,
particularly during later iterations when programs became more complex with
multiple rules and integrity constraints. Slow solving times and limited scal-
ability were also identified as limitations.

We reached a firm conclusion regarding the significance of investing time
in the development of a comprehensive mapping between the Answer Sets gen-
erated by the ASP solver and their in game representation. It became evident
that relying solely on inspecting the raw output of the default solver is prone
to errors and can lead to a mentally demanding experience for developers.

-- Participant 7 : “It would be nice to have a graphical interface that shows
how the solver arrives at solutions.”

-- Participant 8: “[The workflow] could be improved if Clingo had better
syntax. Maybe an abstraction layer built on top of it.”

C.8 Conclusions and Future Work
The aim of our research was to explore the applicability heuristics of Answer
Set Programming (ASP) in the context of game development. We focused
on identifying potential use cases where ASP could be effectively utilized
and conducted an empirical study to evaluate its practical effectiveness. To
achieve our research objectives, we first identified potential use cases where
ASP could be applied. These could include tasks such as character behavior
modeling, game level design, game rule specification, and puzzle generation,
among others. By analyzing these potential use cases, we aimed to determine

106 Article

the strengths and limitations of ASP and its suitability for each specific appli-
cation. Furthermore, we conducted an empirical study to assess the practical
feasibility and effectiveness of using ASP in game development. This study
involved designing experiments or scenarios where ASP-based solutions were
implemented and evaluated. We collected data, analyzed the results, and
derived insights regarding the performance, efficiency, and overall applicabil-
ity of ASP in the given game development contexts. The proposed workflow
stems from the need for robust high level programming interfaces to assist
with the development of complex applications like games. We have proposed
a methodology for recognizing parts where game logic can be elegantly ex-
pressed using answer-set programming.

A research project that could overcome ASP's narrow adaptation is the
creation of language that preservers the AnsProlog language's semantics while
providing a more developer-friendly syntax and structure. Future work should
involve the application of ASP in larger-scale game projects, exploring how
the proposed workflow can fit into long-running game projects.

Limitations. In this, we refer to the limitations of our research. Cer-
tainly, a limitation of our own study is that the participants' profile was
limited to students rather than experienced game developers. Additionally,
the number of participants was relatively small, resulting in our reliance on
qualitative analysis for the research findings.

List of Figures
1 Ροή ανάπτυξης παιχνιδιού με τη βοήθεια των εργαλείων ASP. Ο

σχεδιαστής ξεκινά με έναν αρχικό στόχο, τον σχεδιασμό ενός
μηχανισμού/συμπεριφοράς/συνόλου τεχνουργημάτων, που οδη-
γεί σε μια προδιαγραφή σε μορφή ενός προγράμματος ASP. Οι
λύσεις του προγράμματος μπορούν να βοηθήσουν στην περαι-
τέρω βελτίωση του αρχικού σχεδιασμού, καθώς ανεπιθύμητες ή
απούσες πτυχές γίνονται εμφανείς μετά την ένταξη των δημιουρ-
γημάτων με το υπόλοιπο παιχνίδι [98]. viii

2 Συνολική επισκόπηση της ένταξης ASP στη δημιουργία ενός μη-
χανισμού παιχνιδιού. Ο Κόσμος του Παιχνιδιού περιλαμβάνει την
τρέχουσα κατάσταση του παιχνιδιού και τις πληροφορίες όλων
των οντοτήτων μέσα σε αυτόν. Τα λογικά άτομα εισόδου εί-
ναι τα δεδομένα που χρησιμοποιούνται για να περιγράψουν την
τρέχουσα κατάσταση. Αυτά, μαζί με τους κανόνες και τους πε-
ριορισμούς του προγράμματος ASP, τροφοδοτούνται στον ASP
επιλυτή, ο οποίος εξάγει σύνολα απαντήσεων. Αυτά περιγράφουν
λογική όπως οι ενέργειες που θα πρέπει να πάρει ένας πράκτο-
ρας ή τη θέση πού θα πρέπει να τοποθετηθεί ένα αντικείμενο.
Έπειτα, μέσω μηχανισμών ένταξης, αυτά τα σύνολα απαντήσεων
χρησιμοποιούνται για να ενημερώσουν τον κόσμο του παιχνιδιού. xi

3 Παραδείγματα τοπίων που δημιουργήθηκαν από τον γεννήτορα. . xiii
4 Η υλοποίηση του παιχνιδιού ποδοσφαίρου. xv

3.1 The process from problem to solution using imperative pro-
gramming. 10

3.2 The Answer Set Programming process from problem to solution. 10
3.3 How the Event Calculus functions [93]. 19
3.4 An example graph instance with six (6) vertices and seventeen

(17) edges. 21
3.5 The solution to our N-coloring problem instance based on the

optimum answer set. 23
3.6 Our robot's grid-world. 23
3.7 The robot's optimal path. 25
3.8 A relevant xkcd comic to example 3.1.3 [112]. 26

107

108 LIST OF FIGURES

3.9 Derivation graph for the atom e in the program eq. (3.6). . . . 29
3.10 A character scene extended to a wizard and warrior scene. . . . 34
3.11 The tree structure the example scene is composed of. 35
3.12 Godot's architecture diagram [45]. 37
3.13 The game diagram. 38

4.1 Integration of an ASP solver into a game engine. The Game
World consists of the current game state and the information of
all the game objects inside of it. Input logic atoms are the facts
that are used to describe the current state of the game world.
These, together with the rules and constraints of the ASP pro-
gram, are fed into the ASP solver, which then outputs answer
sets. These describe logic such as the actions that an agent
should take or where an object should be placed. Through the
Game Integration component, these answer sets are then used
to update the game world. 44

4.2 The generic framework's architecture. 45
4.3 ORM as a bridge between a database and objects. 48
4.4 Comparison of the clorm library usage when querying the fact

database for solutions compared to clingo's default Python API. 49
4.5 The various stages of game development encompass several

points where the application of Answer Set Programming (ASP)
can prove advantageous. The proposed framework facilitates
the utilization of ASP in implementing game mechanics, pre-
senting an interface that separates logic into distinct modules
known as ASP Programs. This segregation contributes to im-
proved software design and streamlines the implementation of
game mechanics. ASP can be leveraged for the generation of
game content. By specifying the desired content to the ASP
program, designers can produce content automatically. This
approach enhances the development process by enabling faster
and easier iteration for both programmers and designers. This
iterative workflow fosters greater possibilities for experimen-
tation and exploration within the game's design space. As a
result, the actual game design process is impacted positively,
leading to a more dynamic approach to game development. . . 52

4.6 Modelling a game mechanic with the help of ASP tooling. The
designer starts with an initial goal, the design of the wanted
game mechanic/behavior/set of artifacts which leads to a spec-
ification in the form of an ASP program. The program's solu-
tions can help to further refine the initial design as missing or
unwanted aspects of it become apparent after it's integration
with the rest of the game occurs. 53

LIST OF FIGURES 109

4.7 The experimental setup of the user study. 55

5.1 The football game diagram. 58
5.2 Screenshots of our football game implementation. 72
5.3 Changing the agent's behavior by enabling/disabling ASP mod-

ules. 73
5.4 The workflow of our level generation system. An asset library

consists of all the 3D assets the designer would like to place
inside the scene. These assets are placed inside the Fact Base as
predicates of the form object(O). size(O,X, Y, Z). These facts
together with an ASP program are fed into the solver, which
will generate answer sets. Answer sets which include facts of
the form place(O,X, Y, Z) are then interpreted by the game
engine, placing the assets inside the scene. After the scene is
generated, the designer can improve the ASP program, adding
more constraints or changing the existing ones, iterating over
the process. 73

5.5 Examples of maps generated using our terrain generator. 74
5.6 Indicative average generation times for different grid sizes. Com-

parison is made between the solving + grounding times with
and without constraints. Measurements were made on a ma-
chine with an Intel Core i7-4770 CPU @ 3.40GHz. 75

5.7 The applications created by the participants during the study.
A single iteration is defined as the process of inspecting the
program's produced answer sets and making one or more sig-
nificant modifications to it before the process is repeated. . . . 76

C.1 Game development workflow with the help of ASP tooling. The
designer starts with an initial goal, the design of a game me-
chanic/behavior/set of artifacts which leads to a specification
in the form of an ASP program. The program's solutions can
help to further refine the initial design as missing or unwanted
aspects of it become apparent after its integration with the rest
of the game [98]. 95

C.2 High level overview of ASP integration into a game engine.
The Game World consists of the current game state and the
information of all the game objects inside of it. Input logic
atoms are the facts used to describe the current state of the
game world. These, together with the rules and constraints
of the ASP program, are fed into the ASP solver, which then
outputs answer sets. These describe logic such as the actions
that an agent should take or where an object should be placed.
Through the Game Integration component, these answer sets
are used to update the game world. 98

110 LIST OF FIGURES

C.3 Examples of maps generated using our terrain generator. 100
C.4 The football game implementation. 101

List of Tables
1 Οι εφαρμογές που δημιουργήθηκαν από τους συμμετέχοντες κατά

τη διάρκεια της μελέτης και τα χαρακτηριστικά σχεδιασμού που
ικανοποιούν για την καταλληλότητα του ASP. Αυτά είναι η συ-
ντομία (Σ), η σχετικά μικρός χώρος λύσεων (Μ), και η αναδυό-
μενη πολυπλοκότητα (Α). Στη διάρκεια μετράται ο συνολικός
χρόνος ανάπτυξης. Μια μεμονωμένη επανάληψη ορίζεται ως η
διαδικασία επιθεώρησης των παραγόμενων συνόλων απαντήσεων
του προγράμματος και την εκτέλεση ενός ή περισσότερων σημα-
ντικών τροποποιήσεων στο πρόγραμμα. xvii

3.1 Some Event Calculus predicates. 19

5.1 The applications created by the participants during the study
and the design characteristics which they satisfy for ASP suit-
ability. These are brevity (B), relatively small solution space
(S) and emergent complexity (E). The assignment of charac-
teristics is done based on the comparison of the resulting ap-
plication with the characteristics described in section 4.2.1. . . 69

C.1 The applications created by the participants during the study
and the design characteristics which they satisfy for ASP suit-
ability. These are brevity (B), relatively small solution space
(S), and emergent complexity (E). Duration measures the total
development time. A single iteration is defined as the process
of inspecting the program's produced answer sets and making
one or more significant modifications. 103

111

Πανεπιστήμιο Πατρών, Πολυτεχνική Σχολή
Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Ευάγγελος Λάμπρου του Νικολάου
© Ιούνιος 2023 -- Με την επιφύλαξη παντός δικαιώματος.

	Introduction
	Problem Description
	Goals and Objectives
	Contribution and Scope
	Structure of the Thesis

	Related Work
	Automatic Object Placement/Level Generation
	Agent AI
	Integrating ASP with Game Engines

	Background
	Answer Set Programming
	Syntax
	Semantics
	Grounding and Solving
	Event Calculus
	Examples

	Explainable AI
	Explainability in ASP

	Game Engines/Game Tools
	The Godot Engine
	Building a simple 3D game
	Summary

	Methods
	Integrating ASP into a Game Engine
	Architecture
	Mapping the Game State to ASP
	Discretization of the 3D Space
	Object Relational Mapping (ORM)
	ASP Development

	Design of ASP-Based Game Mechanics
	ASP Applicability Heuristics
	Game Design

	Testing and Evaluation

	Case Studies
	Football (Soccer) Game
	The playing field
	Football-playing agents

	Level Generation
	Generic Object Placement
	Tile Level Terrain Generation

	Goal-Oriented Room Traversal
	Actions and Events
	Agent Choice
	Locked Door Problem
	Results

	Study Participant Projects
	Participant Feedback

	Conclusions
	Summary
	Future Work

	Bibliography
	Axioms
	Discrete Event Calculus

	Code Listings
	Article
	Abstract
	Introduction
	Background Theory on Answer Set Programming
	Heuristics and Method for Applying ASP in the Game Development Process
	Proof of Concept and Case Studies
	Case study (a): Tile-Level Terrain Generation
	Case study (b): Football (Soccer) Game

	Empirical Study
	Research Questions
	Participants
	Study Procedure

	Analysis of Results
	RQ1: Applicability of suggested ASP Heuristics in Game Development Scenarios
	RQ2: Does the suggested ASP methodological approach supports creativity in game design?
	RQ3: Difficulties in the suggested ASP workflow application

	Conclusions and Future Work

	List of Figures
	List of Tables

